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Abstract— We applied the diffusion quantum Monte Carlo method to investigate the effect of a strong magnetic field on 

the few-electron atoms. Gaussian type orbital basis sets are used in the computations developed by using Post-Hartree-

Fock methods. We calculated the ground state energy eigenvalues of the helium, lithium, beryllium, and boron atoms. The 

advantages of adding the electrons correlations to the wave function in the technique of diffusion Monte Carlo method 

enabled us to solve the Schrödinger equation for these atoms in the external magnetic field for different strengths. The 

method showed good agreements with the previous results.  
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I. INTRODUCTION  

 

Quantum Monte Carlo (QMC) is a computational method 

that uses Monte Carlo techniques to solve many-body 

quantum problems. There are several different QMC 

techniques, which vary from exact to the approximate 

solution of Schrödinger’s equation for different types of 

Hamiltonians. The first approximation method in this field 

is the variational Monte Carlo (VMC) method. This 

method depends on the choice of the trial wave function. If 

this function is close to the exact wave function, then the 

rate of convergence is higher, and the approximation will 

be small. If there is a parameter in physics not contained in 

the wave function, the approximation will be larger. 

Simpler ground state wave functions may be preferred over 

complex ground state wave functions because they are 

easier to parameterize. There are two main options to 

optimize the wave function. The first is direct energy 

optimization, and this approach is difficult to achieve. 

However, modern energy optimization methods can 

optimize thousands of parameters in the trial wave 

function, such as the steepest descent method and gradient 

descent method. The second is variance optimization, 

which is an older, but still, effective technique to optimize 

wave functions. It is directly related to the zero variance 

principle. The variance optimization technique minimizes 

the variance of the local energy by varying the parameters 

of the wave function. The variance optimization is more 

efficient than the energy optimization [1]. 

 

The diffusion QMC (DQMC) method is suitable to 

describe the ground state of many quantum systems [2]. In 

this method, Schrödinger’s equation solved by assuming 

imaginary time  . The DQMC method based on the 

evolution of the wave function in imaginary time can 

determine both the ground state energy and the ground 

state wave function of a quantum system, regardless of the 

initial state in which the system prepared. The first 

formulation of the DQMC method depends on the 

similarity between the imaginary time Schrödinger’s 

equation and a generalized diffusion equation. The 

potential energy term of the Schrödinger’s equation 

corresponds to the diffusion (source/sink or reaction) term 

in the generalized diffusion equation. The diffusion-

reaction equation solved by employing stochastic calculus 

as it first suggested by Fermi around 1945 [3]. The 

imaginary time Schrödinger’s equation was solved by 

simulating random walks of particles according to 

(birth/death) processes imposed by the (source/sink) term. 

The formulation of the DQMC method given for the first 

time by Anderson [4], who used this method to calculate 

the ground state energy of small molecules such as H3
+
. 

The second formulation of the DQMC method arisen from 

the Feynman path integral solution of the time-dependent 

Schrödinger’s equation. The wave function expressed as a 

multi-dimensional integral which evaluated by employing 

the Monte Carlo method [5].  

 

DQMC method has become increasingly important to the 

solution of  Schrödinger’s equation for atoms, molecules 

and solids, as described by W. A. Lester et al. [6]. The 

method showed to exhibit high accuracy that scales better 

with system size than other methods. J. Kolorenč and L. 

Mitas [7] represented QMC methods as a powerful and 

broadly applicable computational tool in condensed 

systems. They concentrated on the (fixed-node/fixed-

phase) DQMC method with an emphasis on its 

applications to the electronic structure of solids and other 

extended many-particle systems. 

http://www.isroset.org/
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DQMC method was introduced by T. Pang [8] at an 

elementary level. He highlighted the strengths of the 

method in addressing important issues associated with 

quantum many-body systems, such as those associated 

with the ground-state energy and pair-distribution function. 
4
He clusters trapped on a graphite surface simulated as an 

example of the method. He provided a sample program and 

documentation for developing simulation projects. 

 

Foulkes et al. [9] described the variational and fixed-node 

DQMC methods and how they may be used to calculate 

the properties of many-electron systems. These stochastic 

wave-function-based approaches provide very direct 

treatment of quantum many-body effects.  

 

The most important investigation about atoms in a strong 

magnetic field is the work done by Schmelcher et al. for 

helium [10], lithium [11],[12], beryllium [13],[14], and 

boron [15]. They developed a wave function based on 

Gaussian one-particle basis set in cylindrical coordinates 

using the numerical mesh method.  

 

Yu. P. Kravchenko and M. A. Liberman [16] showed that 

systematically constructed Gaussian-type basis sets applied 

to the simplest one-electron systems in the magnetic field 

varying from 0 to 2×10
8
 (T) can reliably provide accuracy 

of 10
-6

 Hartrees and better.  

 

M. D. Jones, G. Ortiz and D. M. Ceperley, [17] presented 

comprehensive calculations of the electronic structure of 

selected first-row atoms in uniform magnetic fields of 

strength ≤ 10
6
 (T), within a flexible implementation of the 

Hartree-Fock formalism. In [17] the ground-state and low-

lying excited state properties are presented for first-row 

atoms He, Li, C, and ion H
–
. The authors predicted and 

described a series of ground-state quantum transitions as a 

function of magnetic field strength. Due to its astrophysical 

importance, highly excited states of neutral helium 

computed.  

 

Accurate theoretical and experimental methods used to 

investigate the behavior of atoms in a strong magnetic 

field. W. Zhu and S. B. Trickey [18] used anisotropic 

Gaussian type orbital basis functions to calculate H 

through C (1 ≤ Z ≤ 6) and ions Li
+
, Be

+
 and B

+
 in a wide 

range of magnetic field (B) (0 ≤B ≤2000 (a.u.)) which 

showed an accuracy better than single-electron basis sets. 

Abdullah Zafar et al. [19] used active laser spectroscopy to 

make high-resolution magnetic field measurements in 

hydrogen and helium plasmas.  

 

S. B. Doma et al. [20],[21],[22] tested a variety number of 

wave functions using variational QMC technique in the 

presence of a magnetic field of strength in the range (0 ≤B 

≤100  (a.u.)). Their results showed good accuracy, using in 

consideration the effect of correlation wave functions, 

especially the Jastrow wave function. 

 

The present paper aims to apply the DQMC method to 

calculate the energy eigenvalues of the He, Li, Be and B 

atoms in a strong magnetic field. The Born-Oppenheimer 

approximation and the Hamiltonian operator described in 

section II. The method of calculations discussed in section 

III. The used trial wave function illustrated in section IV. 

The results and discussions showed in section V and the 

overall conclusion given in section VI.     

 

II. THE HAMILTONIAN OPERATOR 

 

In this section, we assume, as usual, that the nuclear mass 

is infinite and the magnetic field is oriented along the  -

axis. Hence, the non-relativistic Hamiltonian HM for an 

atom consisting of N electrons presented in a homogeneous 

magnetic field can be written, in a. u. as [20]: 

 

    
 

 
∑   

  
    ∑

 

  

 
    ∑

 

   

 
         

              
 

 
     

         

 
                                 (1)                  

 

where   is the strength of the magnetic field in atomic 

units and   is the number of electrons,    ∑    
   

   

  
  ,    is the  -component of the total spin,    is the  -

component of the total orbital angular momentum, 
    

 
 is 

the diamagnetic term, 
 

 
   is the Zeeman term and     

represents the spin Zeeman term. 

 

III. THE METHOD OF CALCULATIONS 

 

The strategy of the DQMC method is to map the time-

dependent Schrödinger’s equation into an imaginary-time 

diffusion equation. The time-dependent Schrödinger’s 

equation is given by 

 

                      
       

  
                                          (2) 

Performing a trivial, but methodologically crucial shift of 

the energy scale by introducing the replacements      
        and          , the time-dependent 

Schrödinger’s equation can be interpreted as the diffusion 

equation with imaginary-time, as illustrated in ref. [23]. 

This leads to the Schrödinger equation 

 

                      
       

  
                                   (3) 

where    is a reference energy that interpreted as the zero 

point of the system’s energy at the given moment and the 

imaginary time      ⁄ , with   being the real time from 

the original Schrödinger’s equation. Here    is adjusted at 

each time step in the actual simulation so that the 

simulation will converge faster. The solution of the 

diffusion equation (3) can symbolically rewrite as 

 

                                                                 (4) 

 

provided that we started from an initial state       .  

A good choice for the initial configuration is        
    , the trial wave function that we have already found 

from the variational QMC simulation. We can multiply the 

imaginary-time Schrödinger’s equation by      and 
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rewrite it as a diffusion equation for        
          , as follows: 

 

 
       

  
 

  

  
                               

                                                                                   (5) 

 

where the local energy       and        interpreted as a 

distribution function of the system with configuration   at 

time   if        is always positive. The vector 

 

                                
  

 
   |    |                            (6) 

 

interpreted as a drift velocity of the distribution in 

configuration space. 

It is clear from the form of equation (5) that the time 

evolution of        influenced by three contributions, a 

pure diffusion term involving   , a drift term involving  , 

and a source/sink term involving      . 

The short-time evolution of        is given by 

     

                      ∫                              (7)                                                                                                                  

 

where the propagator 

                         

           

[
 

    ]

  

 
                                               (8)                                 

 

carries the system from configuration   at time τ to the 

new configuration    at time     . Where    
         is variance of Gaussian distribution.  

What is left in the propagator is a contribution which either 

lowers or raises the population of configurations in the 

ensemble according to the birth/death rate 

 

                                                                      (9) 

 

The lower the value of the local energy      , the higher 

the rate. This part of the contributions in the propagator 

sampled by a branching process: copies of the 

configuration   created to be part of the new ensemble and 

a mechanism, which does not influence the relative weight 

of each configuration, needs to control the overall number 

of configurations in the ensemble. Usually, this control did 

by adjusting the reference energy. For a boson system, the 

function         behaves as a true distribution, which is 

real and positive. But for a fermion system, the wave 

function has a nodal structure that is usually unknown, and 

further approximations have to make because of the 

fermion-sign problem. 

 

The ground-state energy obtained from the time-dependent 

variational energy interpreted as an average sampled over 

the distribution function       . For example, if we have 

an ensemble of    configurations               
, 

distributed according to       , the average energy is 

given by 

 

         
⟨ | | ⟩

⟨ | ⟩
 

∫             

∫         
 

∑            
  
   

∑       
  
   

    (10)                                               

which becomes the exact ground-state energy    at infinite 

time as        approaches its limiting value.  

To reduce the branching fluctuations, we can replace the 

local energy       in       by the average energy of the 

old and new configurations,                 , resulting 

in a smoother propagator. Also, a Metropolis [24] move 

can be inserted between the configuration update and 

branching with the acceptance probability 

 

                     {  
|     |

 
          

|    |           
}                  (11)                      

for the new configuration   . This additional step ensures 

detailed balance between   and    in configuration space. 

For a fermion system, the fixed-node approximation [25] 

can introduce to reject any attempt that would cross a node 

in the trial wave function. Several methods introduced to 

relax the nodes of the guide wave function with only 

limited success due in part to the intrinsic complexity of 

the fermion-sign problem [26]. 

 

VI. THE TRIAL WAVEFUNCTION 

 

In the DQMC technique, we use the trial wave function as 

a guide wave function. It consists of basis functions to 

represent the electronic wave function. Several types of 

atomic orbitals are using: Gaussian-type orbitals, Slater-

type orbitals, or numerical atomic orbitals. Gaussian-type 

orbitals [27] are the most using functions, as they allow 

efficient implementations of Post-Hartree-Fock methods. 

In computational physics, Post-Hartree-Fock methods are 

the set of methods developed to improve on the Hartree-

Fock (HF), or self-consistent field (SCF) method. They add 

electron correlation in a more accurate way of including 

the repulsions between electrons than in the HF method, 

where repulsions only averaged. 

 

One of the most widely used basis sets is those developed 

by Dunning and coworkers [28],[29] from hydrogen to 

neon since they designed for converging Post-HF 

calculations systematically to the complete basis set limit 

using empirical extrapolation techniques. 

 

For first and second-row atoms, the basis sets are cc-pVNZ 

where N = D, T, Q, 5, 6, ... (D = double, T = triples, etc.). 

The 'cc-p', stands for 'correlation-consistent polarized' and 

the 'V' indicates they are valence-only basis sets. They 

include successively larger shells of polarization 

(correlating) functions (d, f, g, etc.). More recently, these 

'correlation-consistent polarized' basis sets have become 

widely used and are the current state of the art for 

correlated or post-HF calculations.  

 

For fermionic systems, the many-body wave function is 

antisymmetric under particle exchange. The simplest 

antisymmetric function one can choose is the Slater 

determinant, often referred to as the HF approximation. 

This determinant constructed from products of orbitals and 

spins functions in the form  
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√  
|

                            

                            
                                       

                            

|        (12)      

 

where    denotes the position and spin of the i
th

 electron. 

Our used form of the functions    is simply in the form of 

Cartesian primitive Gaussian functions 

 

                        ∑   
 
                    

                  (13) 

       

The atomic orbitals is in Cartesian Gaussian atomic 

function where   is the number of basis,   is exponent and 

   is contraction coefficient,   ,    and    are the angular 

momenta in x-axis, y-axis and z-axis respectively. 

 

The effect of adding a correlation function to the wave 

function is important in this field of quantum mechanics 

[30]. T. H. Dunning [29] used the HF technique to describe 

the electrons’ correlation effects. He showed that the 

compact sets of primitive Gaussian functions obtained to 

describe the correlation effects for the first-row of atoms. 

The calculations of the correlated atomic orbitals yielded 

functions taken to be simple primitive Gaussian functions 

in exponent  . 
 

V. RESULTS AND DISCUSSION 

 

In the present paper, we applied the DMC method to 

calculate the ground-state energy eigenvalues of the 

helium, lithium, beryllium, and boron atoms in the 

magnetic field regime between 0 to 100 (a. u.). All energies 

are in atomic units ( 𝑒        ). Also, the magnetic 

field strength is in atomic units (  𝑎 𝑢     35 ×   5 T). 

Since the wave functions and energies of the atomic states 

are strongly dependent on the magnetic field strength 

(weak, intermediate, and strong), the configurations are 

also affected by the magnetic field. So, the state of a given 

atom may undergo another transition involving different 

electronic configurations. Although the values of    and    

for the ground state of a given atom must be negative for 

  ∞ [11], we fixed the configuration states of the four 

atoms for the same values of    and    to get the lowest 

energy eigenvalues of these atoms.  

 

A. Ground State of Helium Atom in a Strong Magnetic 

Field  

In Table 1, we present the ground state of the helium atom 

with electronic configuration 1s
2
 in a magnetic field 

strength from B = 0 (a.u.) up to B = 100 (a.u.). The 

numerical results of energies for the singlet state gave for 

       and        . The DMC technique shows the most 

accurate calculated energy for the ground state of the 

helium atom in the absence of an external magnetic field 

( 𝑒          3   3   (a.u.)) [31]. 

 

Table 1 Calculated energies of the helium atom in a strong 

magnetic field. 

B (a. u.)  [32] [33] Our Work 

0 −2.9037155 −2.903473 −2.903724 

0.01 −2.9036898 −2.903451 −2.903708 

0.02 −2.9036275 −2.903386 −2.903419 

0.05 −2.9032106 −2.902966 −2.902333 

0.1 −2.9017263 −2.901479 −2.902067 

0.2 −2.8958159 −2.895499 −2.896806 

0.5 −2.8562141 −2.855906 −2.856697 

1 −2.7302745 −2.730015 −2.731095 

2 −2.3305260 −2.330270 −2.329547 

5 −0.5757384 −0.575411 −0.575997 

10 3.0636900 3.064202 3.065334 

20 11.2660889 11.266617 11.269696 

50 38.0754859 38.07607 38.086737 

100 84.9176979 84.918049 84.978872 

 

B. Ground State of Lithium Atom in a Strong Magnetic 

Field  

For the ground state of lithium atom with electronic 

configuration 1s
2
2s, we calculate the lithium atom in a 

strong magnetic field from B = 0 (a. u.) up to B = 100 (a. 

u.). For energies in [11], 2D mesh HF method applied 

using Gaussian basis sets as wave function.
 

In. [23] 

variational Monte Carlo applied using three different wave 

functions for weak, intermediate and strong magnetic field 

strength regions. Table 2 contains the total energies 

obtained for the Li atom within our calculations in 

comparison with the data obtained from pervious results. 

The numerical results of energies for Li is given for 

       and for     
 

 
. The DMC technique shows 

approximately coincide with the exact energy for the 

ground state of lithium atom in the absence of a magnetic 

field ( 𝑒       –         3 (a. u.)) [34]. Although the 

ground state of the lithium atom in free space has      
 

 
, 

its free energy eigenvalue does not affected by the sign of 

   since the Hamiltonian is independent of the spin in this 

case.  
  
Table 2 Calculated energies of lithium atom in a strong magnetic 

field. 

B (a.u.) [11] [23] Our Work 

0 −7.43275 −7.432748 –7.478060 

0.01 −7.43760 −7.437693 –7.483708 

0.02 −7.44214 −7.442008 –7.488281 

0.05 −7.45398 −7.455361 –7.499798 

0.1 −7.46857 −7.468596 –7.514892 

0.2 −7.48400 −7.484008 –7.531183 

0.5 −7.47741 −7.47740 –7.521804 

1 −7.40879 −7.408674 –7.447062 

2 −7.19621 −7.195953 –7.227530 
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5 −6.08811 −6.088033 –6.100468 

10 −3.35777 −3.357665 –3.355567 

20 3.49120 3.491142 3.537065 

50 27.6916 27.690166  27.878768 

100 71.807 71.806551 71.788331 

 

 

C. Ground State of Beryllium Atom in a Strong 

Magnetic Field  

The ground state of the beryllium atom in external uniform 

magnetic fields calculated by means of 2D mesh Hartree-

Fock [13] method for field strengths ranging from zero up 

to 100 (a.u.). The ground state configuration arises from 

the 1s
2
2s

2
,       and        electronic configuration. 

Table 3 presents the energies for each magnetic field 

strength, and our method shows more accurate ground state 

energy for     B = 0, (    –       3   (a.u.)), relative to 

( 𝑒       –          (a.u.) [35]). 
 

Table 3 Calculated energies of beryllium atom in a strong 

magnetic field. 

B (a.u.) [13] Our Work 

0 −14.57336 –14.667388 

0.01 −14.57322 –14.666840 

0.02 −14.57279 –14.666773 

0.05 −14.56986 –14.664083 

0.15 −14.54367 –14.639779 

0.3 −14.46861 –14.562269 

0.5 −14.32860 –14.407258 

1 −13.89120 –13.926043 

2 −12.88908 –12.747120 

5 −9.40602 –8.996774 

10 −2.5988 –1.994677 

20 12.8201 13.640027 

50 64.186 65.334582 

100 155.286 156.465700 

 

 

D. Ground State of Boron Atom in a Strong Magnetic 

Field 

The ground state of the boron atom in external uniform 

magnetic fields calculated by means of 2D mesh Hartree-

Fock [15] method for field strengths ranging from zero up 

to 100 (a.u.). The ground state configuration arises from 

the 1s
2
2s

2
2p,      –   and       

 

 
. electronic 

configuration. Table 4 presents the energies for each 

magnetic field strength, and our method shows more 

accurate ground state energy for B = 0, (    –     5 55  

(a.u.)), relative to ( 𝑒       –     53   (a.u.) [36]). 

 

 

 

Table 4 Calculated energies of boron atom in a strong magnetic 

field. 

B (a. u.) [15] Our Work 

0 −24.53029 –24.652550 

0.01 −24.54018 –24.662494 

0.02 −24.54976 –24.670772 

0.05 −24.57679 –24.704070 

0.1 −24.61631 –24.746664 

0.2 −24.67634 –24.822167 

0.5 −24.73975 –24.867051 

1 −24.63172 –24.749681 

2 −23.57727 –24.075196 

5 −21.81614 –21.312714 

10 −16.68963 –15.855869 

20 −3.92689 –2.837486 

50 — 44.224268 

100 — 136.750344 

 

VI. CONCLUSION 

 

In the present paper, we applied the DMC method to 

investigate the effect of an external uniform magnetic field 

on the ground states of the helium, lithium, beryllium, and 

boron atoms, covering a broad regime of field strengths 

from       u p  t o          a.u. Using the trial wave 

functions developed by Dunning and coworkers [28],[29], 

we determined the ground states of helium (E = –2.903724 

(a.u.)), lithium (E = –7.478060 (a.u.)), beryllium (E =–

14.667388 (a.u.)), and boron (E = –24.652550 (a.u.)) atoms 

with energies approximately close to the exact ones. We 

considered the advantage of adding the electron correlation 

to the wave function and the advantage of imaginary time 

in the guide wave function, as shown in the technique of 

the method, to solve Schrödinger’s equation for these 

atoms in the external magnetic field with different 

strengths. We used 12000 initial configurations, which are 

distributed in space to make up some initial wave functions 

for each atom and begin the diffusion for each magnetic 

field strength. The results showed that for each atom 

configuration, there is a magnetic field strength in which 

the atom transforms into a higher electronic excited state. 

The magnetic field strength transitions from the ground 

state configuration to the higher configurations are: for 

helium at B = 0.08 (a.u.) [10], for lithium at B = 0.17633 

(a.u.) [11], for beryllium at B = 0.0412 (a.u.) [13] and for 

boron at B = 0.0778 (a.u.) [15]. The best results achieved 

in this work are obtained by taking    between 0.002 (HA
-

1
) and 0.005 (HA

-1
). The method showed good agreement 

with the previous results. 
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