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Abstract—This paper deals with the investigation of an accelerated expansion of a spatially homogeneous and isotropic flat 

Friedman-Lemaitre-Robertson-Walker (FLRW) universe in presence of zero-mass scalar fields associated with non-interacting 

and interacting barotropic fluid and dark energy in the framework of f (R, T) gravity. The exact solutions to the field equations 

have been obtained in two cases: power law and exponential law of volumetric expansion. Some physical and geometrical 

properties have been investigated for both power and exponential law models in non-interacting and interacting cases; in 

particular, the energy conditions and density parameters. The physical stability of the derived cosmological models has also 

been examined. We find that the models with exponential volumetric expansion are open, have accelerating expansion and 

physically stable; while, the models with power law volumetric expansion are open in both accelerating and decelerating cases, 

but physically stable and unstable in decelerating and accelerating case respectively. 
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1. Introduction 
 

In recent years, the discovery of an accelerated cosmic 

expansion has led to the advancement in modern cosmology. 

The cosmological observations including high redshift 

supernova experiment [1-5], Wilkinson Microwave 

Anisotropy Probe (WMAP) experiment [6, 7], fluctuation of 

cosmic microwave background radiation (CMBR) [8, 9] and 

large scale structure (LSS) [10, 11] have produced large 

theoretical and observational evidence for an accelerated 

expansion of the universe. But still the reason for an 

accelerated expansion of the universe is not fully confirmed. 

It is said that the Einstein’s general theory of relativity (GTR) 

does not explain the modern scenario of accelerated cosmic 

expansion. Thus, a number of theories alternative to GTR 

have been proposed by the researchers in order to investigate 

the cause of accelerated cosmic expansion. Astrophysical 

observations suggest that there is some kind of repulsive 

force in the universe which is pushing the cosmic objects 

farther apart in the space, and that this accelerated cosmic 

expansion is driven by mysterious dark energy (DE) with a 

large negative pressure [12-18]. The observational evidences 

of DE [1-7] suggest that nearly two-third and one-fourth parts 

of the universe’s mass consist of DE and dark matter (DM) 

respectively, and the remaining consists of baryonic matter. 

The DE part of the universe is usually characterized by the 

dynamically variable quantity called as an equation of state 

(EoS) parameter, denoted by , and it is equal to the ratio of 

spatially homogeneous pressure to the energy density of DE. 

In order to explain the accelerated cosmic expansion, two 

methods have been suggested in the literature; one is to 

investigate different DE candidates and the second is to 

modify GTR. A number of probable DE candidates have been 

proposed in recent years. The cosmological constant  [15, 

19, 20] is the simplest among all the DE candidates which is 

characterized by 1  . The most commonly used primary 

DE candidates are scalar field models, such as time varying 

quintessence model [21-25] characterized by 

1 1/ 3    in which DE density decreases over time as 

3 (1 )( )a t     (a(t) is the scale factor) [26, 27], and k-

essence [28-30], and phantom energy with 1   [31, 32]. 

Some other candidates of DE are quintom [33, 34], tachyon 

[35, 36], chameleon [37], holographic dark energy (HDE) 

[38-41], Ricci DE [42], new age graphic DE [43, 44], 

Chaplygin gas [45], extended Chaplygin gas [46, 47] and the 

generalized Chaplygin gas [48, 49], etc.  
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Another way to explain the accelerated expansion of the 

universe can be found in the modification of GTR. In this 

context, many modified theories of gravity have been 

developed in the last few years by modifying Einstein-Hilbert 

(E-H) action of GTR. Some of the popular modified gravity 

theories are the f (R) theory proposed by Buchdahl [50], f (T) 

theory proposed by Ferraro and Fiorini [51], and Bengochea 

and Ferraro [52], and f (R, T) theory proposed by Harko et 

al.[53]. Also, there are a number of modified theories with 

varying cosmological implications such as f (G) theory [54-

56], f (R, G) theory [57, 58], f (T, B) theory [59], f (Q) theory 

[60, 61], etc. Recently, a new extension of f (Q) known as the 

f (Q, T) theory has been proposed by Yixin et al. [62, 63]. 

Many researchers have investigated an accelerated cosmic 

expansion by studying various aspects of different 

cosmological models in these modified gravity theories by 

taking different kind of matter sources and different 

volumetric expansion laws. In examining an unsolved issue 

of the unification of gravitational and quantum theories, the 

basic obstacle is the “zero-mass scalar field”. The theories of 

gravitation that describe zero-mass scalar fields associated 

with gravitational field have attracted considerable attention 

in the recent time.  

 

Inspired by the discussions and explorations related to the 

issue of accelerating cosmic expansion made by the 

researchers in past using modified gravity theories, in this 

paper we consider a spatially homogeneous and isotropic flat 

FLRW space-time in the presence of zero-mass scalar fields 

associated with non-interacting and interacting barotropic 

fluid and dark energy in the framework of f (R, T) gravity. We 

study the models by applying power law and exponential law 

of volumetric expansion. This paper is organized as follows: 

Section 2 contains the brief review of the work done by some 

researchers in the framework of some modified theories of 

gravitation which is related to the study carried out in this 

paper; f (R, T) formalism in brief has been provided in 

Section 3; Section 4 is devoted to the metric and 

corresponding field equations in f (R, T) theory.  The 

solutions to the field equations are obtained in section 5. 

Section 6 deals with the construction of non-interacting and 

interacting two-fluid cosmological models by using power 

law and exponential law of volumetric expansion. Also, some 

physical and geometrical properties of the models along with 

their graphical behavior have been investigated in this 

section. In section 7, the physical stability of the derived 

models is examined. Lastly, Section 8 summarizes the 

conclusions. 

 

2. Related Work 
 

The ‘Big-Bang’ of the universe at an initial epoch can be 

avoided by introducing a zero-mass scalar field [64]. In this 

regard, some researchers [65, 66] have explored cosmological 

models with zero-mass scalar field. Recently, Chirde and 

Shekh [66] have studied the isotropic background for 

interacting two fluid scenario coupled with zero-mass scalar 

field in the framework of f (R) Gravity; Pawar et al. [67] have 

studied accelerating expansion of the universe consisting of 

two fluids coupled with zero-mass scalar field in f (R) gravity. 

Houndjo and Piattella [68], Samanta [69], Singh and Singh 

[70] and many other researchers have done remarkable work 

on DE models in the framework of f (R, T) gravity. Houndjo 

[71], discussed the transition of matter dominated phase to an 

accelerated phase by reconstructing f (R, T) gravity as f (R, T) 

= f1 (R) + f2 (T).  Due to the fact that the astrophysical data 

indicates that the total energy of the universe is occupied by 

DE, DM and baryonic matter, many researchers have studied 

the scenario of interacting and non-interacting two-fluid 

models in different theories of gravitation. In particular, 

Amirhashchi et al. [72, 73], have studied interacting and non-

interacting two-fluid DE models with time dependent 

deceleration parameter in FRW universe in GTR. They have 

also studied two-fluid viscous dark energy models in non-flat 

and isotropic FRW universe [74]. Pradhan et al. [75], have 

discussed the scenario of two- fluid DE models with constant 

deceleration parameter in FRW universe. Saha et al. [76], 

have revisited the two-fluid DE model in FRW universe 

discussed earlier by Amirhashchi et al. Adhav et al. [77] have 

studied the anisotropic Bianchi type-I universe with DM and 

HDE. Rao et al. [78] have investigated the evolution of DE 

parameter within five dimensional Kaluza-Klein DE model of 

the universe in the framework of Saez-Ballester theory of 

gravitation.  

 

3.  f (R, T) Formalism 
 

The action of f (R, T) gravity obtained by Harko et al. [53] 

from Einstein-Hilbert variational principle and using the 

system of units where 8 1G c   , is given by 

  41
[ , 2 ]   

2
mS f R T g d x   L  ,                              (1) 

where f (R, T) is an arbitrary function of the Ricci scalar R 

and of the trace T of the trace-energy tensor of the matter, 

 mL  is the matter Lagrangian density, and    g  is the 

determinant of the metric tensor   i jg . 

The stress-energy tensor i jT   of the matter source is given by 

 

    2
   

m

i j i j

g
T

gg










L
 ,                                  (2) 

and its trace is  
i j

i jT g T . 

By considering the matter Lagrangian density mL  depends 

only on the metric tensor components    i jg  and not on its 

derivatives, equation (2) reduces to  

  2 m
ij ij m ij

T g
g


 



L
L  .                                    (3) 

The field equations of  f (R, T) gravity obtained by varying 

the action (1) with respect to the metric tensor    i jg  are given 

by 

      
1

,    ,  , 
2

i

R i j i j i j i Rf R T R f R T g g f R T      
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   ,  ,  ( Θ+ )i j R i j T i j i jf R T T f R T T    ,          (4) 

where  
 , 

, R

f R T
f R T

R





,  

 , 
,  ,T

f R T
f R T

T





 

i  is a covariant derivative, and Θ  i j is defined as 

Θ 2i j i j i jT p g    .                                      (5) 

Harko et al. [53] obtained some particular classes of 

 , f R T  gravity models as given below: 

         1 2,  2 , , f R T R f T f R T f R f T     

and         1 2 3, f R T f R f R f T  . 

Generally, the field equations depend on the physical nature 

of the matter field, through the tensorΘi j . Hence, depending 

on the nature of matter source, several theoretical models of f 

(R, T) gravity can be obtained. Reddy et al. [79, 80], Singh 

and Singh [81] and Sahoo et al. [82] have assumed f (R, T) = 

R + 2 f (T) in their studies of cosmological models. Yadav 

[83] and Brahma et al. [84] have assumed f (R, T) = f1 (R) + f2 

(T) with  1f R R ,  2f T T   while studying the 

models with matter source as string cloud and perfect fluid, 

respectively. In this paper, we assume the matter source as 

barotropic fluid and dark energy with zero-mass scalar field, 

and  

     1 2,    ,f R T f R f T R T                        (6) 

where   is an arbitrary parameter.  

Using (5) and (6) in (4), we get the field equations in the 

form: 

1 1
1

2 2
i j i j i j i j

T
R R g T p g



   
       

   
.                 (7) 

4.  Metric and Field Equations 

We consider the spatially homogeneous and isotropic flat 

FLRW metric in the form: 

  2 2 2 2 2 2 ds dt a t dx dy dz    ,                          (8) 

where   a t  is the metric potential or the scale factor of the 

universe. 

The Ricci Scalar R for the universe (8) is obtained as 

2

2
6 

a a
R

a a

 
   

 
 .                                                        (9) 

The overhead dots represent the differentiations with respect 

to time  t . 

The stress-energy tensor due to barotropic fluid, DE with 

zero-mass scalar fields is taken as 

  ' 1
,   ,     ,    ,

2

k

i j i j i j i j i j kT p u u p g g    
 

     
 

                                            (10) 

where    0,0,0,1iu   is the four velocity vector in the co-

moving coordinates satisfying   1i

iu u  .  p, ρ and      are 

the isotropic pressure, energy density and zero-mass scalar 

field, respectively. 

Here 
Λ  mp p p   and

Λm    , where  
mp  and 

m  are the pressure and energy density of barotropic fluid, 

respectively; 
Λp  and 

Λ  are the pressure and energy 

density of DE, respectively. Also,    m m mp  
 
and 

Λ Λ Λ   p   , where 
m  and 

Λ  are the EoS parameters 

of barotropic fluid and DE respectively. 

The scalar field      satisfies the equation, 

 ;   0ii   .                                        (11) 

In the co-moving coordinate system, from (10), we have  

1 2 3 2

1 2 3

1
 

2
T T T p      ,   

4 2

4

1

2
T    ,  

0 i

jT  for  i j ,                                 (12) 

and hence the trace is  

  23T p     .                                      (13) 

The field equations (7) and (11) with the help of (9), (12) and 

(13) for the metric (8) reduce to  
2

2

2

3 1 1 1
2 1

2 2 2

a
p

a

a a
 

 

   
         

   
,        (14)

 
2

2
3

a

a
  

23 1 1 1

2 2 2
p 

 

 
   

 
  ,                  (15) 

and 

3 0
a

a
    .                                            (16) 

We now define some parameters which are important in 

cosmological observations. The average scale factor ( a ), 

spatial volume ( V ), the mean Hubble parameter ( H ), mean 

isotropy parameter (
mA ), expansion scalar ( ), shear scalar 

( ), deceleration parameter ( q ), density parameter ( Ω ), 

speed of sound ( s ) are defined respectively as 

3a V ,  
3V a ,  1 2 3

1

3 3

V a
H H H H

V a
     ,     

3
2

1

(1/ 3) [( ) / ]m i

i

A H H H


  , ;   3i

iu H   ,  

2 2(3 / 2)  mA H  ,    2 1// 1q a a a H


    ,    

2

ΛΩ / 3H ,    and   /s p  . 

5.  Solution of the Field Equations 

By integrating Equation (16), we obtain 
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3 ha   ,                                            (17) 

where h is a constant of integration. 

The field equations (14) and (15), with the help of an 

equation (17), yield  

2

2
  (3 2)

( 1)(2 1)

a
p

a

a a




 

  
     

   
  

          
2 6(3 1)

 
2(2 1)

h a













,                            (18)       

  
 

2

2
  4 3  

1 2 1

a

a

a

a


  

 

  
    

   

  

         
 

2 61
 

2 2 1
h a















.                     (19)     

The energy conservation equation ( ;  0i j

jT  ) for the matter, 

yields 

 3    0
a

p
a

    .                                       (20) 

We assume that the EoS parameter of the barotropic matter to 

be a constant [72-76] as,  

m
m

m

p



   Constant,                                (21) 

while 
Λ  has been considered to be a function of time t. 

Now, we obtain the pressure and density of the two-fluid with 

zero-mass scalar field in non-interacting and interacting 

scenarios. 

First, we assume that two-fluids do not interact with each 

other. Thus, the energy conservation equation (20) leads to 

the separate equations for barotropic matter and DE [72-76] 

as, 

 3 0m m m

a
p

a
     ,                          (22) 

 Λ Λ Λ3 0
a

p
a

     .                                  (23) 

As equation (22) contains   m , a constant, therefore it is 

integrable; while equation (23) contain Λ   which is time 

dependent parameter and hence not integrable. Equation (22), 

on integration, leads to 

 3  1

0    m

m a


 
 

 ,                                   (24) 

where  0  is an integrating constant. 

Next, we consider the interaction between barotropic matter 

and DE components. In this case, the energy densities will no 

longer satisfy independent conservation laws; and we can 

write the equations as 

 3( / )m m ma a p Q    ,                                      (25) 

 Λ Λ Λ3( / )a a p Q     .                     (26) 

The quantity    Q  expresses the strength of interaction 

between DE components. Following Amirhashchi et al. [72-

76], Adhav et al. [77] and Rao et al. [78], we consider the 

interaction term    Q  in the form] 

3 mQ H  ,                                            (27) 

where      is the coupling coefficient, can be considered as 

constant. Solving (25) with the use of (27), we obtain  

 3  1

0    m

m a
 

 
  

 ,                                 (28) 

where 
0    is a constant of integration. 

In the next section, we construct two cosmological models by 

considering two different forms of volumetric expansion 

laws, and discuss their behavior for non-interacting and 

interacting cases. 

 

6.  Cosmological Models 

We construct the cosmological models by considering two 

forms of volumetric expansion laws: (i) Power law; and (ii) 

Exponential law. 

6.1 Model with power law volumetric expansion 

We consider the power law for volumetric expansion in the 

form: 
3

1

mV c t  ,                                         (29) 

where 
1   c  and    m  are constants. Hence, the average scale 

factor is  
1/3

1   ma c t   .                                           (30) 

The metric (8) with the scale factor given in equation (30) 

assumes the form 

 2 2 2/3 2 2 2 2

1     mds dt c t dx dy dz     .                   (31) 

For this model the cosmological parameters defined in section 

4 are obtained as follows: 

m
H

t
  ,    

3m

t
   ,    

1
 

m
q

m


 ,    0mA  ,    

2 0  . 

It is observed that the spatial volume is zero at   0t   and it is 

an increasing function of time. The Hubble’s parameter and 

expansion scalar are decreasing functions of cosmic time  t ; 

these are very large initially and tend to zero as  t  . 

Thus, the model has initial singularity, i.e., the universe starts 

evolving with a big-bang, and it expands with decreasing rate. 

The mean anisotropy parameter and shear scalar are zero, 

indicating the model is shear free and isotropic throughout the 

evolution. The deceleration parameter is constant and its 

value depends on  m ; it is negative for   1m  and   0m   , 

positive for  0 1m  , and zero for   1m  . Thus, 

1m  and   0m  , 0 1m  , and   1 m  correspond to the 

universe’s accelerating expansion, decelerating expansion and 

expansion with constant rate, respectively.  

 

6.1.1   Non-interacting two-fluid model 

Using equation (30) in the equations (18), (19) and (24), we 

obtain  
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   3 1 1

0  1
m mm

m t c
 

 
   

  ,                            (32) 

 

 

  

 

 

2

2 6

Λ 2

1

3 1 1
   

1 2 1 2 2 1  

m
m m h

t t
c

   


  

 
      

 
  

      

              
 

 3   10

1

1

 
  m

m

m
t

c





  








,                    (33) 

 

 

   

  
2

Λ

3 1 3 2
 

1 2 1

m m
p t

  

 


      

 
 

  

              
 

   

 
2

3   16 0

2 1

1 1

3 1  
     

2 2 1  

m

m

mm m
h

t t
c c





  



 



 
  

 

.  (34) 

 

The EoS parameter of dark energy, Λ Λ Λ  /  p  , is 

obtained in terms of cosmic time    t  as 

   

  

 
   

 

 

  

 
   

 

2

2
3   16 0

2 1

1 1
Λ

2

2
3   16 0
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.    (35)  

 

The metric (31) together with (32) to (35) represents zero-

mass scalar fields coupled with two-fluid non-interacting DE 

model in f (R, T) gravity. 

 

Since the values of m , such as 1m  , 0 1m  , and 

  1 m  correspond to the universe’s accelerating expansion, 

decelerating expansion and expansion with constant rate, 

respectively; we have shown the graphical behavior of some 

cosmological parameters of the constructed model at 

  0.4 m (for the case: 0 1m  ),   1 m  and 

  1.5 m  (for the case 1m  ). 

 

From equations (32), (33) and (34), it is observed that the 

quantities Λ    ,    m , Λ   p and    mp becomes infinite as 

  0t  . This shows that the model has initial singularity. The 

graphical behavior of DE density Λ      , DE pressure Λ   , 

EoS parameter Λ     for DE, matter density    m  and matter 

pressure   mp   versus cosmic time    t  are shown in Figure 1, 

2, 3, 4 and 5 respectively. 

 

 

Figure 1: The plot of 
Λ     vs. t for  

0 11,    100h c      

and 0.5m   in non-interacting two-fluid model with power law 

volumetric expansion. 

 

 

 

Figure 2: The plot of 
Λ  p   vs. t for 

0 11,    100h c      

and 0.5m   in non-interacting two-fluid model with power law 

volumetric expansion. 
 

 

 

Figure 3: The plot of Λ     vs. t for  0 11,    100 h c      

and 0.5m   in non-interacting two-fluid model with power law 

volumetric expansion. 
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Figure 4: The plot of  m   vs. t for 
0 11,    100c    and 

0.5m 
 
in non-interacting two-fluid model with power law volumetric 

expansion. 
 

 

Figure 5: The plot of  mp   vs. t for 
0 11,    100c    and 

0.5m   in non-interacting two-fluid model with power law volumetric 

expansion. 

 

It is observed that, for 0 1m  , the universe has infinitely 

large energy density and it declines with time and tends to 

zero for large  t .  Thus the universe is free from big rip. In 

case of   1m  , the DE density has large negative value for 

very short period of time at early stage, and then it increases 

rapidly and becomes positive, and then behaves as the 

decreasing function of time such that it tends to zero for large 

t.  

For 0 1m  , the DE pressure Λ  is a positive decreasing 

function of time, while it is negative throughout and 

increasing for   1m  . In both the cases, it finally tends to 

zero as expected for an expanding universe. 

 

For 0 1m  , the EoS parameter of DE has a constant 

positive value 0.78 (approx.) showing the matter dominance 

of the universe. For 1m  , at the initial stage, Λ   1   

indicates the matter dominated era of the early universe. It 

decreases rapidly, becomes negative and crosses -1 in the 

early stage of evolution, i.e., from Λ    1    (quintessence 

region) to 
Λ    1    (phantom region), which is a Quintom 

DE scenario stated by Zhang [85]. Later on it tends to the 

same constant negative value lying in (-1, 0), i.e., it remains 

present in the quintessence region throughout the passage of 

time, which is acceptable as per the SNe Ia observational 

data.      

Both density    m and pressure   mp  of matter are the positive 

decreasing functions of time, and these converge to zero for 

large  t  as expected. 

 

Energy conditions: 

Energy conditions play an important role in comprehending 

the geometric structure of the universe. The weak energy 

conditions (WEC), dominant energy conditions (DEC) and 

strong energy conditions (SEC) stated in [72-76] are 

respectively, 

(i)   0
eff

  ,  
 

  0
eff

p   ,   (ii)   
 

0
eff

p   ,  

and   (iii)  
 

3 0
eff

p   . 

 

 
Figure 6(a): The plot of energy conditions vs. t 

for
0 1  1,    100 h c     , 0.5m   and 0.4 m   in 

non-interacting two-fluid model with power law volumetric expansion. 

 

 
Figure 6(b): The plot of energy conditions vs. t 

for 0 1  1,    100 h c     , 0.5m   and 1 m   in 

non-interacting two-fluid model with power law volumetric expansion. 
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Figure 6(c): The plot of energy conditions vs. t 

for 0 1  1,    100 h c     , 0.5m   and   1.5 m   in 

non-interacting two-fluid model with power law volumetric expansion. 

 

The L.H.S. of these energy conditions are depicted in the 

Figures 6(a), 6(b) and 6(c). For 0 1m   (decelerating 

case), all energy conditions are satisfied throughout the 

evolution of the universe. For 1m   (case of expansion with 

constant rate), the conditions are not satisfied at the early 

stage of evolution whereas later on all the conditions are 

satisfied. For   1m   (case of accelerating expansion), the 

conditions are not satisfied at the early stage of evolution 

whereas at later time all the conditions are satisfied except 

SEC and it is due to an accelerating cosmic expansion. Thus, 

our results are in fair resemblance with the relevant 

observations found in the literature. 

 

Density parameters: 

The density parameters 
2Ω 3/   m m H  and 

2

Λ Λ Ω  / 3H  corresponding to the barotropic matter and 

DE components respectively, are obtained as 

     1  3   1 22

0 1/Ω ( 3      ) m mm

m m c t
 


    

  ,                   (36) 
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 
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  m
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t

c




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






.                   (37) 

Then the overall density parameter given by Λ Ω Ω Ωm   

is  

 

  

 

 

2

2 2 6 2

1

3 1 1
Ω    

3 1 2 1 6 2 1   m

m h

m m c t

   

   

     
  

. (38) 

The behavior of density parameters is demonstrated in the 

Figures 7(a), 7(b) and 7(c) for different values of  m .  

In case of   0.4m  (i.e., 0 1m  ), the DE component 

dominates the evolution. In case of 1m  , it is observed that 

the ordinary matter dominates the universe in the early stage 

of evolution, but later, DE component dominates the 

evolution of the universe. In all the cases, the value of overall 

density parameter Ω  is lying between 0.35 and 0.5 

(i.e., Ω 1 ), showing the universe is open, which is not 

strictly compatible with the present-day observations of a flat 

universe. 

 

 
Figure 7(a): The plot of density parameters Vs. t  for 

0 1  1,    100 h c     , 0.5m   and 0.4 m   in 

non-interacting two-fluid model with power law volumetric expansion. 

 
 

 
Figure 7(b): The plot of density parameters Vs. t  for 

0 1  1,    100 h c     , 0.5m   and 1 m   in non-

interacting two-fluid model with power law volumetric expansion. 

 

 

 
Figure 7(c): The plot of density parameters Vs. t  for 

0 1  1,    100 h c     , 0.5m   and 1.5 m   in 

non-interacting two-fluid model with power law volumetric expansion. 
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6.1.2   Interacting two-fluid model 

Using equation (30) in the equations (18), (19) and (28), we 

obtain  

   3 1 1

0  1  m mm

m t c
   

 
     

  ,                            (39) 
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. (41) 

The EoS parameter of dark energy is obtained in terms of 

cosmic time  as 

   
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.             

 (42) 

The metric (31) together with (39) to (42) represents zero-

mass scalar fields coupled with two-fluid interacting DE 

model in    , f R T  gravity.  

 

The graphical behavior of energy density and pressure of 

barotropic matter and DE, and EoS parameter of DE, in 

interacting two-fluid case is shown in the figures 8 to 12. 

Figures depict the same behavior of these parameters as in 

non-interacting case with slight increase/decrease in their 

values. There is a slight increase in the values of 

Λ    and Λ  p  . The value of Λ    is slightly decreased in case 

of 0 1m  , while slightly increased in case of 1m   but 

tends to the same constant value lying in (-1, 0), i.e., it 

remains present in the quintessence region for later time. Both 

   m and    mp  are the positive decreasing functions of time 

with considerable amount of decrease in values than in non-

interacting case, and these converge to zero for large  t  as 

expected. 

 

 

 

Figure 8: The plot of 
Λ     vs. t for 

0 11,    100,   0.8h c        and 0.5m   in 

interacting two-fluid model with power law volumetric expansion. 

 

 

Figure 9: The plot of 
Λ  p   vs. t for 

0 11,    100,   0.8h c        and 0.5m   in 

interacting two-fluid model with power law volumetric expansion. 

 

 

Figure 10: The plot of Λ     vs. t for 

0 11,    100,   0.8h c        and 0.5m   in 

interacting two- fluid model with power law volumetric expansion. 
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Figure 11: The plot of  m   vs. t for 
0 11,    100,   0.8c      

and 0.5m   in interacting two-fluid model with power law volumetric 

expansion. 

 

 

Figure 12: The plot of  mp   vs. t for 
0 11,    100,   0.8c      

and 0.5m   in interacting two-fluid model with power law volumetric 

expansion. 

 

The density parameters  Ω  m  and Λ Ω   corresponding to the 

barotropic matter and DE components respectively, are 

obtained as 

     1  3   1 22

0 1Ω ( 3      )    / m mm

m m c t
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 ,            (43) 
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.                   (44) 

Adding (43) and (44), we get an overall density parameter 

 Ω  in case of interacting fluids, which is the same as 

obtained in non-interacting case, and hence have the same 

properties as discussed previously. 

Also, the expressions for     
eff

 ,  
 

   
eff

p  ,  
 eff

p   

and   
 

3
eff

p   in case of interacting fluids, are the same 

as in non-interacting case, and hence the energy conditions 

are same. 

6.2  Model with exponential volumetric expansion 

We consider the law for exponential volumetric expansion in 

the form: 
3

2

ktV c e ,                                          (45) 

where 
2   c  and    k  are constants. Hence, the average scale 

factor is  
1/3

2   kta c e .                                            (46) 

The metric (8) with the scale factor given in equation (46) 

assumes the form 

 2 2 2/3 2 2 2 2

2     ktds dt c e dx dy dz    .                     (47) 

For this model the cosmological parameters defined in section 

3 are obtained as follows: 

H k  ,    3k   ,    1 q   , 0mA  ,     
2 0  . 

It is observed that the spatial volume is constant (
2c ) 

at   0t  , and it is the increasing function of time. Thus, the 

model has no initial singularity, and the universe starts 

expanding with some nonzero fixed volume, and it expands 

exponentially with the time. The Hubble’s parameter and 

expansion scalar are constant throughout the evolution of the 

universe. The mean anisotropy parameter and shear scalar are 

zero, indicating the model is shear free and isotropic 

throughout the evolution of the universe. The constant 

negative value of deceleration parameter ( 1 q   ) indicates 

an accelerating expansion of the universe.  

  

6.2.1   Non-interacting two-fluid model 

Using equation (46) in the equations (18), (19) and (24), we 

obtain  
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                                          (50) 

The EoS parameter of dark energy, 
Λ Λ Λ  /  p  , is 

obtained in terms of cosmic time    t  as 
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      (51) 

The metric (47) together with (48) to (51) represents zero-

mass scalar fields coupled with two-fluid non-interacting DE 

model in f (R, T) gravity. The model is free from any kind of 

singularities. 
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The variation of energy density and pressure of DE and 

barotropic matter, and EoS parameter of DE, with cosmic 

time    t is shown in the Figures (13) to (17). Both    m  and 

   mp  are positive decreasing functions of time, which tends to 

zero for large time. The energy density (
Λ ) of DE is 

constant in the initial stage; it increases very slowly for very 

small period of time and then achieve a constant positive 

value throughout the expansion of universe. The pressure 

(
Λp ) of the dark fluid has a constant negative value initially; 

it increases very slowly for a very small period of time and 

becomes constant (negative) throughout the evolution of the 

universe. It is observed that the EoS parameter (
Λ ) of dark 

energy has a fixed negative value less than (-1), initially; it 

increases with time and approaches towards -1, but does not 

cross the phantom divide or cosmological constant 

(
Λ 1   ) region. This is found compatible with the 

cosmological tests based on present data, including SNe Ia 

data as well as CMB anisotropy and mass power spectrum. 

Thus our derived model represents early stage evolution as 

well as the present universe. 

 

 

Figure 13: The plot of 
Λ     vs. t for 

0 21,    25h c      

and 0.5m   in non-interacting two-fluid model with exponential 

volumetric expansion. 

 

Figure 14: The plot of Λ  p   vs. t for 0 21,    25h c      

and 0.5m   in non-interacting two-fluid model with exponential 

volumetric expansion. 

 

Figure 15: The plot of 
Λ     vs. t for 

0 21,    25h c      

and 0.5m   in non-interacting two-fluid model with exponential 

volumetric expansion. 

 
 

 

Figure 16: The plot of  m   vs. t for 0 2  1,    25c    and 

0.5m   in non-interacting two-fluid model with exponential 

volumetric expansion. 

 

 

 

Figure 17: The plot of  mp   vs. t for 0 2  1,    25c    and 

0.5m   in non-interacting two-fluid model with exponential 

volumetric expansion. 
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Energy conditions: 

The variation of the L.H.S. of energy conditions versus 

cosmic time    t  for non-interacting two-fluid model with 

exponential expansion is shown in the Figure 18. It is 

observed that only the weak energy conditions (   0eff  , 

   0
eff

p    ) are satisfied in this model. 

 

 
Figure 18: The plot of energy conditions Vs. t  for 

0 21,    25h c      and 0.5m    in non-interacting 

two-fluid model with exponential volumetric expansion. 

 

Density parameters: 

The expressions for density parameter 
2/Ω 3m m H of 

barotropic matter and density parameter 
2

Λ ΛΩ 3/ H  of 

DE components are obtained as follows:  
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12

2

Ω       
3  

m

m

k t

m e
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 ,         (52) 
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


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 
.   (53) 

  

Then the overall density parameter given by Λ Ω Ω Ωm   

is 

  

 

2

2 2 6

2

( 1)
Ω      

2 1 6 2 1     k t

h

c k e

 

 


 

 
.                   (54) 

 

It is found that the nature of density parameters is same for all 

  0k  , we have shown it graphically for   1k  . It is 

observed that the DE energy density ( ΛΩ ) dominates the 

evolution of universe throughout the time, which may be the 

probable cause for accelerating expansion of the present 

universe. The value of the total density parameter is less than 

1, and hence our derived model predicts an open universe. 

This is not strictly compatible with the observational results 

as the present day universe is very close to the flat universe. 

 

 
Figure 19: The plot of density parameters vs. t for 

0 21,    25h c      and 0.5m    in non-interacting 

two-fluid model with exponential volumetric expansion. 

  

6.2.2   Interacting two-fluid model 

Using equation (46) in the equations (18), (19) and (28), we 

obtain  
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                                          (56)
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                                          (57) 

The EoS parameter for dark energy is obtained in terms of 

cosmic time    t  as 
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 
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                            (58) 

The metric (47) together with (55) to (58) represents zero-

mass scalar fields coupled with two-fluid interacting DE 

model in f (R, T) gravity.  

Figures (20) to (24) depict the time variation of energy 

density and pressure of DE and barotropic matter, and EoS 

parameter of DE, in interacting two-fluid scenario of the 

model with exponential volumetric expansion. From the 

figures, it is observed that the above stated parameters behave 

in same way as in the case of non-interacting two-fluids, but 

with small increase/decrease in their values. The values 

of Λ    , Λ  p  and Λ    in an interacting case are slightly 

decreased than in non-interacting case, while the values of 

 m   and  mp   in an interacting case are slightly increased 

than in non-interacting case. The graph of EoS parameter 
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shows that the interacting model remains present in the 

phantom region throughout the evolution of universe. 

 

 

Figure 20: The plot of 
Λ     vs. t for 

0 21,    25,  h c      

and  0.5m    in interacting two-fluid model with exponential 

volumetric expansion. 

 

 

Figure 21: The plot of 
Λ  p   vs. t for 0 21,    25,  h c      

and 0.5m    in interacting two-fluid model with exponential 

volumetric expansion. 
 

 

Figure 22: The plot of Λ     vs. t for 0 21,    25,  h c      

and 0.5 m    in interacting two-fluid model with exponential 

volumetric expansion. 

 

 

Figure 23: The plot of  m   vs. t for  
0 21,    25, c     and 

0.5m   in interacting two-fluid model with exponential 

volumetric expansion. 

 
 

 

Figure 24: The plot of  mp   vs. t for 
0 21,    25, c     and 

0.5m   in interacting two-fluid model with exponential 

volumetric expansion. 

 

 

The density parameters 
2

m /Ω 3m H  and 

2

Λ ΛΩ 3/ H  corresponding to the barotropic matter and 

DE components respectively, are obtained as 
 
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and 
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. (60) 

 

Then by adding (59) and (60), we obtain the overall density 

parameter  Ω , which is the same as obtained in non-

interacting case, and hence has the same properties as 

discussed in the non-interacting case. 
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Figure 25: The plot of density parameters vs. t 

for 0 2  1,    25 h c     , and     0.5m    in 

interacting two-fluid model with exponential volumetric expansion. 

In case of interacting fluids the values of density parameters 

 Ω  m
 and 

Λ Ω   corresponding to the barotropic matter and 

DE components are slightly increased and decreased 

respectively than their values in non-interacting case. 

Also, the expressions for     
eff

 ,  
 

   
eff

p  ,  
 eff

p   

and   
 

3
eff

p   are same as in the non-interacting case, 

and hence follow the same energy conditions. 

 

7.  Physical stability of the models 
 

For the stability of the solutions obtained in non-interacting 

and interacting cases of both power law and exponential law 

models, we should check whether our models are physically 

acceptable or not. For this it is required that the velocity of 

sound (
s ) should be less than the velocity of light (c), i.e., 

within the range  0 / ) 1(s p    .   

(1) Power law models:  

In our non-interacting and interacting two-fluid models with 

power law volumetric expansion, we obtained the sound 

speeds as 
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and        
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                                        (62) 

 

The graphical behavior of the sound speeds given by (61) and 

(62) are shown in the Figure 26 and Figure 27, respectively. 

In both non-interacting and interacting cases for   0.4m   

( 0 1m  , case of decelerating expansion); the sound speed 

  0.8s   , i.e., 0 1s  , throughout the evolution of the 

universe.  

In non-interacting case for 1m   (case of accelerating 

expansion); the sound speed   s  vary rapidly from 5 to – 4 in 

the initial epoch, and then it start increasing and assumes 

constant negative value near to zero. Thus, we obtain 0s   

throughout the evolution of the universe. 

In interacting case for 1m   (case of accelerating 

expansion); the sound speed    s  vary rapidly from 3 to – 42 

in the initial epoch, and then it increases rapidly and assumes 

the constant negative value near to zero. In this case also, we 

obtain 0s   throughout the evolution of the universe. 

Thus, our non-interacting and interacting two-fluid model 

with power law volumetric expansion is stable in decelerating 

case (for 0 1m  , i.e., 0q  ), and unstable  in 

accelerating case (for 1m  , i.e., 0q  ). 

 
Figure 26: The plot of sound speed Vs. t for 

0 1  1,    100 h c     ,  0.5m   in non-interacting two-

fluid model with power law volumetric expansion. 
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Figure 27: The plot of sound speed Vs. t for 

0 1  1,    100 h c     , 0.5,   0.8m    in 

interacting two-fluid model with power law volumetric expansion. 

 

(2) Exponential models:  

In our non-interacting and interacting two-fluid models with 

exponential volumetric expansion, we obtained the sound 

speeds as 
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and 
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Figure 28: The plot of sound speed Vs. t   for 

0 21,    25h c      and 0.5m    in non-interacting 

two-fluid model with exponential volumetric expansion. 

 
Figure 29: The plot of sound speed Vs. t for 

0 2  1,    25 h c     ,   and     0.5m    in interacting 

two-fluid model with exponential volumetric expansion. 

 

Figures 28 and 29 depict the graphical behavior of sound 

speeds given by (63) and (64), respectively. 

It is observed from the figures that in case of interacting 

fluids, the sound speed is slightly decreased than in case of 

non-interacting fluids. But, in both non-interacting and 

interacting cases the sound speed   s  satisfies the condition: 

0 1s  , throughout the evolution of the universe. Thus, 

our non-interacting and interacting two-fluid models with 

exponential volumetric expansion are physically stable. 

 

8. Discussion and Conclusions 

In this paper we have studied the two-fluid scenario coupled 

with zero-mass scalar fields in the f (R, T) theory of gravity 

for isotropic flat FLRW space-time. The non-interacting and 

interacting two-fluids models have been considered and 

discussed by assuming power law (
3

1

mV c t ) and 

exponential law (
3

2

ktV c e ) of volumetric expansion. The 

derived power law cosmological models exhibit both 

decelerating as well as accelerating phase of expansion, and 

shows physical stability and instability, depending on the 

values of m. The models with exponential law of volumetric 

expansion are accelerating and physically stable for 

all 0k  .  Both the models are shear free and isotropic 

throughout the evolution of the universe. In both non-

interacting and interacting two-fluid models with power law 

of volumetric expansion, the parameters such as Λ    , Λ  p  , 

Λ    ,  m  ,  mp  , s , etc., behave in a same way but with 

only a slight increase/decrease in their values, while the 

energy conditions and overall density parameters are the 

same. The same things are observed are in case of both non-

interacting and interacting two-fluid models with exponential 

law of volumetric expansion.  

 The power law model has initial singularity, i.e., the 

universe starts evolving with a big-bang, and it expands 

with decreasing rate; and it is free from a big rip. The 
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power law of volumetric expansion yields a constant 

deceleration parameter whose value depends on m. The 

values 0 1m  , and   1 m , and   0m  , 1m   

correspond to the universe’s decelerating expansion, 

expansion with constant rate, and accelerating expansion, 

respectively.  

 For 0 1m  (case of decelerating expansion), the EoS 

parameter (
Λ    ) of DE has a constant positive value 0.78 

(approx.) showing the matter dominance of the universe. In 

this case, all type of energy conditions are satisfied and the 

speed of sound    0.8s   , i.e., 0 1s   throughout 

the evolution of the universe, which shows the model is 

physically stable and hence acceptable.  

 For 1m  (case of accelerating and constant expansion), at 

early stage of evolution of the universe, there is a rapid 

transition from matter dominated region
Λ(   0)  to 

quintessence region
Λ 0( 1  )     and then to a 

phantom region 
Λ(   1)   , which is a Quintom DE 

scenario stated by Zhang [85]; and later on it remains 

present in the quintessence region 

Λ( 1 ) 0   throughout the evolution, which is 

acceptable as per the SNe Ia observational data. In this 

case, all the energy conditions are satisfied except SEC and 

it is due to an accelerating cosmic expansion. The speed of 

sound, 0s   throughout the evolution of the universe, 

shows the model is physically unstable.  

 The value of overall density parameter Ω  is lying between 

0.35 and 0.5 (i.e.,Ω 1 ), showing the universe is open, 

which is not strictly compatible with the present-day 

observations of a flat universe, but resembles with the 

results favouring a universe with spatial curvature [6-7].  

 

 The model with exponential law of expansion is free from 

any kind of singularity, starts expanding with some 

nonzero fixed volume (
2c ), and it expands exponentially 

with the time. The model is shear free and isotropic 

throughout the evolution of the universe. An assumed 

exponential law of expansion yields constant negative 

value (-1) of a deceleration parameter which indicates an 

accelerating expansion of the universe. The EoS parameter 

( Λ ) of DE component has a fixed negative value less 

than -1 initially, it increases with time and approaches 

towards -1, but does not cross the phantom divide or 

cosmological constant ( Λ 1   ) region, and it remains 

present in the phantom region throughout the evolution of 

universe. This is found compatible with the cosmological 

tests based on present data, including SNe Ia data as well 

as CMB anisotropy and mass power spectrum. Thus our 

derived model represents early stage evolution as well as 

the present universe. It is observed that the DE energy 

density dominates the evolution of universe throughout the 

time, which may be the probable cause for accelerating 

expansion of the present universe. The value of the total 

density parameter is less than 1, and hence our derived 

model predicts an open universe. This is not strictly 

compatible with the observational results as the present 

day universe is very close to the flat universe. It is 

observed that only the weak energy condition is satisfied in 

this model. The sound speed   s  satisfies the 

condition: 0 1s   throughout the evolution of the 

universe. Thus, the model with exponential volumetric 

expansion is physically stable. 

 

In summary, we found that the models with exponential 

volumetric expansion are open, have accelerating expansion 

and physically stable; while, the models with power law 

volumetric expansion are open in both accelerating and 

decelerating cases, but physically stable and unstable in 

decelerating and accelerating case respectively.  So, our 

results are in fair resemblance with the relevant observations 

found in [1-11, 66, 72-77] with the exception that the present-

day observational results shows universe is very close to flat. 

Thus, the solutions obtained in this paper may be useful for 

exploration and understanding of various characteristics of 

DE models in the evolution of universe within the scope of 

f(R, T) theory of gravitation. 
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