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Abstract— The kidneys are the main organ for removing metabolic waste products that are not needed by the body. Kidney 

infection or pyelonephritis is an infection in the bladder tract that attacks the kidneys and enters through the lower or external 

urinary tract, spreads to the bladder, to the ureters (upper urinary tract), then finally to the kidneys. This disease is often not 

detected so it can cause complications of kidney failure. This research discusses survival analysis in kidney infection patients 

using Weibull survival regression by carrying out descriptive statistical analysis, estimating Weibull regression model 

parameters, testing hypothesis of regression model parameters simultaneously and partially. The aim of this study was to 

determine the Weibull survival regression model and determine the factors that influence the length of time for kidney infection 

patients to relapse. The results of this research obtained the best model is weibill regression , from which it can be seen that 

frailty, gender, and the patient's medical history are factors that significantly influence the recovery rate of kidney infection 

patients. 
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1. Introduction  

The kidneys are the main organs for removing metabolic 

waste products that are not needed by the body. The main 

function of the kidneys is to get rid of normal metabolic 

waste, excrete xenobiotics and their metabolites and non-

excretory functions. The kidneys are very vital organs of the 

human body because the kidneys are one of the urinary 

organs. Kidney disease can increase the risk of death for 

sufferers and can also be a trigger for the onset of other 

diseases. If kidney disease can be detected early, other 

diseases that cause death can be prevented immediately [1]. 

Kidney infection or pyelonephritis is an infection that occurs 

in the bladder tract and can propagate to the kidneys. 

Infection of the kidneys is associated with urinary tract 

infections because generally germs or bacteria that attack the 

kidneys enter through the lower or outer urinary tract, 

propagate to the bladder, to the ureters (upper urinary tract), 

then finally to the kidneys. Germs can also infect the kidneys 

through the bloodstream, but this is rare. Some of the causes 

of the higher rate of infection sensitivity in patients with 

kidney damage in patients due to decreased immunoglobulin 

levels, protein deficiency, phagocytosis disorders against 

bacteria and due to immunosuppressive treatment. The 

disease often goes undetected so it can lead to complications 

of kidney failure. For this reason, it is necessary to analyze 

which factors can predominantly affect kidney function [2]. 

In the health sector, statistical analysis that is often used in 

analyzing the rate of cure is survival analysis. Survival 

analysis is a statistical procedure for data analysis with the 

results of the variable being considered, namely time. In 

survival analysis, there are two main functions, namely the 

hazard function and the survival function. The hazard 

function is the failure rate of an event in question, which is 

when an individual experiences an event in the time interval t 

provided that he has survived until that time. The survival 

function is the probability of survival until a certain time 

which can be estimated using parametric methods [3]. 

Parametric methods can explain the individuals in the group, 

survival time, and the variables that affect them or can 

explain the variables that affect individuals in the group on 

their survival time. 

One parametric method that is often used is Weibull 

Regression because the Weibull distribution has more flexible 

properties when compared to other models. This is because 

the Weibull distribution has shape β parameters that make the 

hazard curve more flexible. Weibull regression modeling 

emphasizes changes in survival and hazard functions after 
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being directly influenced by covariates. In the application of 

Weibull regression to time data generally describes the 

chances of survival and the determination of the rate at which 

an individual experiences an event which refers to death or 

incidence of disease [4]. 

 

2. Related Work  

Some previous studies, one of which is research by Safitri, et 

al. (2013) [5] and Safitri &Helma (2016) on factors affecting 

kidney failure using Cox regression [6]. In addition, there are 

several studies comparing Weibull regression and Cox 

Proportional Hazard regression to conclude that the Weibull 

regression model is better than Cox Proportional Hazard 

regression because the AIC value is small [7] [8] [9]. 

Research and development on the use of Weibull regression 

has also been carried out by Hasan, et al [10], namely 

survival analysis using Weibull regression on the cure rate of 

pulmonary tuberculosis patients at Aloei Saboe Hospital 

Gorontalo City;  Hasmiati, et al [11], namely Weibull 

regression model on hospitalization time data of patients with 

coronary heart disease with death events at Abdul Wahab 

Sjahranie Hospital Samarinda; Panduwinata, et al [12], 

namely Weibull regression model on classified continuous 

data; Solehah &; Fatekurohman [4] , namely survival analysis 

of lung cancer patients using Weibull regression; Suyitno 

[13], which is about parameter estimation and hypothesis 

testing of univariate Weibull regression models; and Suyitno, 

et al [14], namely about the multivariate Weibull regression 

model.  Based on the description above, this study focuses on 

the latest application of data and the application of Weibull 

regression to find out what factors affect the length of time 

for relapse of kidney infection patients. Factors affecting 

hospitalization time data for kidney infection patients can be 

determined based on Weibull regression models. 

 

3. Theory/Calculation 

3.1 Weibull Distribution 

The Weibull distribution is a distribution that plays an 

important role in survival data analysis [15]. This distribution 

is widely used in survival analysis modeling. The opportunity 

density function of the scale-form version of the Weibull 

distribution is [16]: 

 
(1) 

The cumulative functions of the Weibull distribution are as 

follows: 

 
(2) 

The survival function of the scale-shape version of the 

Weibull distribution can be written by the following equation: 

 
(3) 

The equation of the hazard function of the Weibull 

distribution is as follows: 

 
(4) 

One method of estimating Weibull distribution parameters is 

Maximum likelihood Estimation (MLE), which is an 

estimation method by maximizing the likelihood function. 

The likelihood function and log-likelihood function of the 

weibull distribution are as follows [13]: 

 

   
  

(5) 

 

(6) 

 

3.2 Weibull Regression 

The Weibull regression model is a regression model of the 

Weibull distribution with scale parameters expressed in the 

following equation: 

 (7) 

where  is a dimensionless regression 

parameter vector  and  an 

independent variable vector with  [17]. Then   it is a 

scale parameter or natural parameter of the Weibull 

distribution, which can be expressed in terms of a function of 

regression parameters (covariates) [18]. 

Based on the above similarities, FKP Weibull becomes [13]: 

 (8) 

where is a dimensioned parameter 

vector with Weibull survival regression model and 

Weibull hazard regression model as follows: 

 (9) 

 (10) 

 

 

3.3 Weibull Regression Model Parameter Estimation 

Distance estimation parameters of Weibull regression models 

can use the MLE method. Weibull regression parameter 

estimation consists of  survival regression model 

parameter estimation and Weibull hazard regression model. 

The likelihood function of Weibull regression based on the 

probability density function of Weibull regression is as 

follows: [13] 

 

(11) 
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with . The ML estimator of the 

Weibull regression model is a vector value  that maximizes 

the likelihood function as well as maximizes the log-

likelihood function. ML estimators are easily obtained 

through maximum log-likehood function. The log-likelihood 

function is as follows: 

 

 

(12) 

The exact solution of the Likelihood equation to obtain the 

exact estimator of Maximum Likelihood (ML) cannot be 

found analytically for several reasons, so an alternative 

method for obtaining the estimator   is found, namely 

the Newton-Raphson iterative method. The Newton-Raphson 

method is one approach that is often used to estimate 

parameters, because the derivative of the equation is easy to 

calculate [19]. In this Newton-Raphson iterative method, it is 

necessary to calculate gradient vectors and Hessian matrices  
 to determine ML estimators. The gradient vector is as 

follows: 

 
(13) 

The general form of the Hessian matrix is as follows: 

 

(14) 

 

The Newton-Raphson algorithm is given by the following 

Equation: 

 
(15) 

the Newton-Raphson iteration process begins with 

determining the initial estimated value of the parameter 

 and terminated on the fourth 

iteration  if convergent conditions are met, i.e. 

 , where  is  a positive real number that 

is small enough for example and  

expresses the norm or distance of two vectors. 

 

3.4 Weibull Regression Model Parameter Significance 

Testing 

Parameter significance testing of Weibull regression models 

consists of two, namely simultaneous and partial parameter 

signification testing. Testing the significance of parameters is 

simultaneously carried out to determine whether the 

estimated parameters affect the regression model together. 

This test is also used to confirm whether the estimated 

parameters provide a suitable regression mode (fit). The 

hypothesis of testing the significance of parameters 

simultaneously is: [20] 

 

   

(Weibull's regression model is not feasible) 

  minimal ada satu     

(Weibull's regression model is feasible) 

 

The test statistics used are G which is determined by the 

likelihood ratio test method, namely:  

 (16) 

The critical area of this test will  be rejected at the level of 

significance    if the value  . 

Partial significance testing is used to determine whether 

certain covariates individually have an effect on the 

regression model. The partial testing hypothesis for the 

specified c is   as follows: 

    

(Covariates have no effect on regression models) 

      

(Covariates have no effect on regression models) 

The test statistics used are the Wald test given by: 

 
(17) 

This critical area of testing will  be rejected at the level of 

significance  if a value is obtained from  [20]. 

 

3.5 Multicollinearity Detection 

Multicollinearity is the condition that there is a linear 

relationship or strong correlation between covariates in a 

regression model. Multicollinearity can be detected by 

looking at the value of Variance Inflation Factor (VIF) which 

is formulated as follows: 

 
(18) 

A VIF value greater than 10 indicates the presence of 

multicollinearity between covariates [21]. 

 

4. Experimental Method/Procedure/Design 

This research was conducted with a research design, literature 

study, and empirical review. The type of research is non-

experimental, namely research whose observations are carried 

out on a number of characteristics (variables) of research 

subjects according to the circumstances as they are, without 

any manipulation (intervention) of researchers.  The data used 

is taken from the package provided by the R software, namely 

the survival package. The sampling technique of this study is 

purposive sampling. Research data analysis techniques 

consist of analysis of Weibull survival regression model and 

Weibull hazard model, because this study focuses more on 

the length of time it lasts until the recurrence of kidney 

infection disease and prioritizes obtaining factors that can 



Int. J. Sci. Res. in Physics and Applied Sciences                                                                                     Vol.12, Issue.4, Aug. 2024   

© 2024, IJSRPAS All Rights Reserved                                                                                                                                         4 

affect the length of time kidney infection patients relapse 

based on assumptions from the distribution used, in this case, 

the Weibull distribution.  The stages of data analysis in the 

Weibull regression model are descriptive statistical analysis, 

estimation of Weibull regression model parameters, 

simultaneous and partial testing of regression model 

parameter hypotheses. 

 

5. Results and Discussion 

5.1 Data Exploration 

In numerical type research data, data descriptions can be 

obtained as in the following table: 

Table 1. Descriptive Statistics of Research Data 

Data Mean 
Standard 

Deviation 
Min Max 

Hospitalization 

Time ( )  130.91 1.00 562.00 

Age ( ) 43.70 14.74 10.00 69.00 

Frail ( ) 1.18 0.68 0.20 3.00 

Furthermore, exploration using the histogram is shown in 

Figure 1. 

 

 
(a) 

 
(b) 

Figure 1. Descriptive Statistics of Age Variables 

(a) Relapse (b) No Relapse 

Based on the diagram in Figure 1, it can be seen that the 

highest recurrence rate of infection after catheter installation 

in kidney disease patients is around the age of 50 years. 

 

 
(a) 

 
(b) 

       Figure 2. Descriptive Statistics of Frail Variables 

(a) Relapse (b) No Relapse 

 

Based on the diagram in Figure 2, it can be seen that the 

highest recurrence rate of infection after catheter insertion in 

kidney disease patients is in patients with estimated weakness 

of about 0.5 to 1.4. 

 

In categorical type research data, data descriptions can be 

obtained as shown below: 

 
(a) 

 
(b) 

Figure 3. Descriptive Statistics 

(a) Gender; (b) Types of disease 

 

Based on Figure 3(a), the number of male patients is 20 

people or 26% while female patients are 56 people or 74%. In 

Figure 3.3(b), the number of patients who have GN disease is 

18 people or 24%, then patients who have AN disease there 

are 24 people or 32%, then patients who have PKD disease 

there are 8 people or 10% and patients who have other 

diseases (other) there are 26 people or 34%. 

Checking the survival function of two visually different 

categories (treatment) using the Kaplan-Meier method on 

each variable of the categorical type. 

 

 
Figure 4.  Kaplan-Meier curve of gender variables 

Based on Figure 4, a graph of survival function using Kaplan-

Meier, it is known that female patients provide greater results 

than male patients. It can be concluded that the chances of 

survival in female patients are greater than those of male 

patients. 

 

 
Figure 5. Kaplan-Meier curve of disease variables 

Based on Figure 5, survival function graph using Kaplan-

Meier, it is known if patients have types of AN, GN, PKD, 

and other diseases give the same results (lines close together), 

so it can be concluded if the chances of survival in patients 

with AN, GN, PKD, and other diseases do not have different 

chances of recurrence. 

 

To be more accurate, hypothesis testing was carried out using 

the Log-Rank test and obtained results as in the following 

table: 
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Table 2. Log Rank Testing 

Variable P-value  Results 

Gender ( ) 0.00 0.05 Reject  

Disease ( ) 0.40 0.05 
Failed to Reject 

 

 

Based on Table 2, it is known that for the sex variable it is 

known that  which means  

is rejected so that it can be concluded that there are 

differences in survival function between female patients and 

male patients, this is in accordance with the Kaplan-Meier 

graph in Figure 4. As for the disease variable, it can be known 

that the value  that means  

failed to be rejected so that it can be concluded that there is 

no difference in survival function between patients with GN, 

AN, PKD, other (other) this is in accordance with Kaplan 

Meier's graph in Figure 5. 

 

5.2 Weibull Distribution Parameters 

Estimation of Weibull distribution parameters was carried out 

on the analysis of recurrence time data of patients with kidney 

infection. The parameter estimation method is MLE which is 

solved by the Newton-Raphson iterative method.This is 

because the derivative of the equation is easy to calculate 

[18]. The Weibull distribution is characterized by three 

parameters, namely the location parameter ( ), scale 

parameters ( ), and shape parameters ( ). The location 

parameter ( ) is set as the minimum value in the distribution, 

where in survival analysis the location parameter ( ) is zero 

[23].  The results of parameter estimation using R software 

can be seen in the following table: 

Table 3. Weibull Distribution Parameter Assessment 

Parameters Estimates 

Scale (λ) 0.80579494 

Shape ( ) 89.12814246 

Based on Table 3, the survival function estimator is obtained, 

namely:  

 (20) 

and the estimator of the theoretical cumulative distribution 

function is: 

 

    
(21) 

 

5.3 Inpatient Time Data Distribution Testing 

Testing the distribution of recurrence time data using the 

Anderson-Darling approach to determine whether the 

recurrence data of patients with kidney disease follow the 

Weibull distribution, with a cumulative distribution function. 

The calculation results obtained using R software can be seen 

in the following table. 

Table 4. Weibull Distribution Test Results 

P-value  Results 

0.3421 0.05 Failed to Reject  

Based on Table 4, which means  failed to be rejected so it 

can be concluded that the data on the length of time for 

relapse are Weibull distributed with a shape of magnitude 

0.80579494  and scale of 89.1281424 

 

5.4 Multicoliniearity Detection 

One method of detecting multicollinearity is to use VIF 

values. A VIF value of > 10 indicates multicholinerity 

between independent variables.  

 

 
Figure 6. Heatmap Correlation 

 

Based on Figure 6, visually it can be seen that there is no 

strong correlation between the Age and Frail variables, where 

based on the calculation of the VIF value of each independent 

variable using R software can be seen in the following table. 

 
Table 5. VIF value  

Variable VIF value 

Age ( ) 1.062353 

Frail ( ) 1.106196 

 

Based on Table 5, it can be seen that the VIF values for both 

variables are below 10 which indicates that there is no 

correlation between predictor variables, this is in accordance 

with the Heatmap Correlation in Figure 6. 

 

5.5 Weibull Survival Regression Modeling 

The model formed using independent variables, namely Age, 

Frail, Gender, and Disease is as follows: 

 
(22) 

with: 

 : Time Variable 

 : Weibull distribution form parameters 

 : Age Variable 

 : Frail Variable 

 : Gender Dummy variable (1 if female, 0 if male) 
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 : Dummy variable GN disease (1 if GN, 0 others) 

 : Dummy variable AN disease (1 if AN, 0 others) 

 : Dummy variable PKD disease (1 if PKD, 0 others) 

 : Intercept 

 : Slope Variable Age 

 : Slope Variable Frail 

 : Slope Variable Dummy Gender 

 : Slope Variable Dummy GN disease 

 : Slope Variable Dummy Disease AN 

 : Slope Variable Dummy Disease PKD 

Next, the parameter estimation of the Weibull survival 

regression model. Based on the calculation results through R 

software, the Weibull regression model parameter estimator is 

obtained in Table 6 below: 

Table 6. Weibull Regression Model Parameter Estimator 

Parameters Estimates 

 1.636661 

 4.96747 

 -0.00323 

 -1.05518 

 1.48237 

 0.01159 

 -0.59542 

 1.22265 

Based on Table 6, Weibull's survival regression model is 

obtained, namely: 

 

 

 

(23) 

  

 

 

 

(24) 

 

5.6 Weibull Regression Best Model Selection 

The criteria in choosing the best model can refer to the 

smallest AIC (Akaike Information Criterion) value and the 

smallest BIC (Bayesian Information Criterion), but in this 

study in the selection of the best model Weibull regression 

uses the AIC value, because the value produced by AIC is 

smaller than BIC [24]. The best Weibull regression model is 

selected based on the 4 independent variables used. 

Table 7. Best Model of Weibull Regression 

Model AIC value 

 622.1 

 623.9 

Based on Table 7, the smallest AIC value is 622.1, which is 

the Weibull regression model which contains 3 independent 

variables, namely, Frail , Gender , and Disease . 

 

5.7 Best Weibull Regression Model Hypothesis Testing 

Parameter hypothesis testing Weibull Regression Model 

consists of simulating parameter hypothesis testing and 

partial parameter hypothesis testing. 

Simultaneous parameter hypothesis testing aims to find out 

whether the estimated parameters provide a variable 

regression model (fit). Simultaneous testing also aims to 

determine whether the variables frail, sex, and disease 

together affect the Weibull regression model. Here's the 

hypothesis testing: 

    

(Weibull Regression Model is not feasible (not fit)) 

 :  There is at least one    

(Weibull Regression Model fit (fit)) 

The results of simultaneous testing using R software can be 

seen in the following table: 

Table 8. Simultaneous Test Results 

P-value Results 

1.7 x 10
-14 

 rejected 

 

Based on Table 8, it can be seen that means H0 is rejected so 

that it can be concluded that frail, sex, and disease 

simultaneously affect the patient's recurrence time data. 

Partial testing of parameter hypotheses is performed to 

determine whether certain independent variables individually 

have an effect on Weibull's regression model. The test 

statistics used are the Wald test with W~N(0,1), the following 

results are obtained: 
Table 9. Partial Test Results 

Variable  P-value Result 

Frail ( ) <2 x 10
-16 

 rejected 

Gender ( ) 4.4 x 10
-15 

 rejected 

Disease GN ( ) 0.8167 
 failed to be 

rejected 

Disease AN ( ) 0.0009  rejected 

Disease PKD ( ) 8.5 x 10
-15 

 rejected 

Based on Table 3.10, it is known that frail , sex , AN 

disease and PKD disease affect the recurrence time data. 

While GN disease did not have a partial effect on the data 

model of patient recurrence time.  

 

Based on the results of the best Weibull regression modeling 

and parameter testing, it can be said that the Weibull 

regression model is proven to be able to obtain factors that 

affect the length of recurrence time of patients with kidney 

infections. This is also reinforced by the results of research 

from Cavalcante, T., et al [25], who explain that Weibull 

regression is more suitable for research that prioritizes the use 

of assumptions from a distribution that underlies the length of 

patient survival, in this case the distribution in question is the 

Weibull distribution. 
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6. Conclusion and Future Scope  

Based on the results of the analysis and discussion, it can be 

concluded that the best weibull survival regression model 

formed is as follows: 

 

 

 

(27) 

where: 

 = Time Variable 

 = Frail Variables  

 = 
Gender Dummy variable (worth 1 if female, 0 if 

male) 

 = 
Dummy variable GN disease (worth 1 if GN, 0 if 

not) 

 = 
Dummy variable disease AN (value 1 if AN, 0 if 

not) 

 = 
Dummy variable PKD disease (worth 1 if PKD, 0 if 

not) 

Factors that affect the length of time for relapse of kidney 

infection patients are Frail, Gender, and the patient's disease 

history. 
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