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Abstract— The detailed coherent dynamical structure factor of liquid Na at 390 K, in the wave-vector range, 1.6 Å

-1
 ≤   ≤ 6.5 

Å
-1

, has been predicted by the modified microscopic theory of the collective dynamics of a simple liquid. The wave-vector range 

corresponds to the primary peak position and the subsequent   values of the static pair correlation function. The computed 

values of the dispersion relation, the velocity of sound and the diffusion coefficient have also been reported. The dynamical 

structure factors yielded by the modified microscopic theory satisfy the zeroth sum rule along with other sum rules of liquids. 
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1. Introduction  

A coherent dynamical structure factor is obtained when van-

Hove space-time dependent correlation function is Fourier 

transformed over space-time. The van-Hove space-time 

dependent correlation function is the time generalized static 

pair correlation function. Thus, the dynamical structure 

factors can provide comprehensive information about the 

dynamical behaviour of the system. Here, a system can be an 

ordered system which has lattice translational invariance or 

can be disordered like gases. Distinguished experimental 

techniques like thermal neutron inelastic scattering or 

inelastic X-ray scattering can be used to study the coherent 

motion of interacting particles of a system However, these 

techniques have some limitations; owing to significant 

neutron-nucleus interaction-induced incoherent scattering, it 

is challenging to derive a coherent dynamical structure 

component from inelastic thermal neutron scattering data: the 

proportion. Inelastic X-ray scattering, on the other hand, can 

provide pure coherent structures when performed on the 

highly resolved synchrotron radiation sources. Unlike 

Rubidium and Cesium [1-4], whose INS carries 

predominately coherent data, scattering cross-sections of INS 

spectra for liquid Na carries comparable amounts of coherent 

and incoherent parts, the ratio is 0.99 and is not able to 

provide information regarding the collective dynamics of 

liquid metal. However, Inelastic X-ray scattering (IXS) 

experiments [5], which use high-flux  with an energy of 

21.747 keV of the incident photons, performed at high 

resolution third-generation synchrotron sources, can provide 

the pure coherent data and such an experiment has been 

performed to measure spectral lineshapes of essentially 

coherent   ,S  of liquid Na near its melting temperature, 

at 390 K. The IXS experiment precisely identifies the small 

momentum transfer region 0.15 Å
-1

 ≤   ≤ 1.46 Å
-1

, i.e.,  < 

m which is the wave-vector value where the first peak of the 

static structure factor is positioned and is the significant 

region for the system's collective dynamics. Hence, a 

comprehensive spectral lineshape of  ,S is obtained, 

which includes all pertinent details regarding the entire 

collective dynamics of the liquid sodium is available only for 

small momentum transfers. Higher wave vector region 

 > m , however, remained unreported and hence, no 

experimental data for collective dynamics in this region of Na 

is provided by the IXS experiment. 

 

In the current study, the dynamical structure factor and hence, 

collective dynamics of liquid Na has been predicted using an 

approach that involves the microdynamics of liquid. The 

current theory assess the reaction of the correlated and 

interacting particles of the fluid to an external radiation, by 

solving the equations of motion for moving particles carrying 

time-dependant disorders and then taking appropriate history 

averages of their paths [6]. The Fluctuation-dissipation 

theorem describes the connection between the space-time-

Fourier transform of the imaginary part of the response 

function   ,  to the dynamical structure factor  ,S . 

The neglected correlations between distinct particles are 

assimilated into the theory by defining a distinctive 

characteristic relaxation time, which, further, is dependent 

upon the static structure factor, density, temperature, mass, 

interaction potential, and the diffusion coefficient. In the 
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theoretical approach, the diffusion coefficient is generalized 

to a wave-vector dependant identity that takes a specific value 

for a given  .A further modification to theory has been 

incorporated to explain the experimentally measured  ,S  

for fluids to make a realistic depiction of  tFs ,  , the 

intermediate self-scattering function,  is attained by making 

only the diffusion coefficient frequency  dependent instead 

of  a number of arbitrary parameters. With this theoretical 

method, collective dynamics of a number of liquids has 

previously been explained successfully [7-11]. In the present 

communication, this form of the modified microscopic theory 

has been implied to investigate the collective dynamics of 

liquid Na. 

  

This Paper is organized in five sections. Section one lays an 

introductory foundation to the research field of current study. 

In section 2, a brief review of the previous work carried in the 

field is made. Section 3 draws theoretical layout and 

mathematical formalism used to find the outcomes of the 

research work and section 4 contains results and figures for 

the performed computations along with related discussions.  

Section 5 conclusions drawn from the study are narrated. 

 

2. Related Work  

As described in section 1, the dynamical structure factor is 

related to ),( 


 which is the imaginary part of the Fourier 

transform of the density-2 response function, through the 

well-known Fluctuation-Dissipation Theorem and is given as: 
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Here, ),( 


 is a complex function obtained when the 

density-2 response function is Fourier transformed and 

),( 


  is the imaginary part of the ),( 


.  

T denotes the temperature and ρo is the number density of 

particles. 

 

Density-2 response function accounts for the response of any 

liquid when perturbed with a weak external probe to generate 

space-time dependant fluctuations in equilibrium density. 

Microscopic theory describes an approach to find the ),( 


 

function by solving micro-dynamics of the liquid. 

Trajectories of moving particles are depicted from the 

solution of classical equations of motion whose history 

averages provide further analysis by defining intricate space-

time dependant correlation functions. In the earlier 

microscopic theory, the time dependant correlations were 

neglected and hence, the dynamical structure factors 

generated were far away from the experimentally observed 

spectral lineshapes. To include the neglected correlations, a 

characteristic relaxation time is introduced so as to satisfy the 

zeroth sum rule. The modified microscopic theory is then 

applied to yield much better results for dynamical structure 

factors for a variety of liquids [12-16]. 

 

3. Theory and Mathematical Formalism 

The dynamical structure factor in the above described 

modified microscopic theory is expressed as: 
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In the expression (1), β’’ = Deff κ
2
, Deff is ω–dependant 

diffusion coefficient, and β=(kBT)
-1

. 

 

 

 

The frequency   occurred in the expression (1) is given as 

follows:  
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And,    k /1 , where is the relaxation time 

defined in the present theory as follows: 
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In the expression (3)    = D
2 , D is the diffusion 

coefficient, m is the atomic mass and  S  is the static 

structure factor given as follows: 

     dr
r

r
rgrS
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             (4) 

The elastic frequency E  and 0r  occurred in the expression 

(2) are given respectively, as; 
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And peak r = 0r  of the delta function 
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Here,  g r  is the static pair correlation function and z is 

space coordinate. 

 rV , here, is the inter-atomic potential  

 

The current-current correlation function C(κ,ω)  can be 

expressed in terms of the dynamical structure factor as  

follows: 

 

C(κ,ω)=(ω2
S(κ,ω))/κ2    (7) 

 

4. Results and Discussion 

As is discussed earlier, high resolution inelastic X-ray 

scattering (IXS) for liquid sodium at 390 K has been reported 

only for low momentum transfers,  ≤ 1.46 Å
-1

 and hence, 

theoretical computations of dynamical structure factors for a 

liquid of Na atoms comprising a density of 0.927 g/cc at 390 

K for higher wave-vector values ( >1.46 Å
-1

) are attempted 

in the preset study. The modified microscopic theory  

 

described in the introduction and mathematical sections 

require the interaction potential to be known. Though a 

number of interatomic potentials for liquid Na, computed 

either as in an algebraic forms or deduced from any 

dependant quantity, have been reported in the literature, an 

interatomic interaction potential suggested by Paskin and 

Rahman [17] has been used for the present investigation. This 

potential form suggested by the Paskin et al. has successfully 

reproduced the experimental static structure factor  S  [18] 

and hence, has been chosen here. This form of interatomic 

potential carries Friedel oscillations in the long-range 

oscillatory part, originated due to the presence of ionic 

charges in the liquid, along with a soft repulsive core of Born-

Mayer kind. When compared to the other two succeeding 

alkali metals, in the periodic table, liquid cesium (Cs) and 

liquid rubidium (Rb) [16] near their melting points, these 

alkali metals though, are similar to Na in consisting of 

repulsive and oscillatory parts, are exhibiting larger cycles for 

oscillations and the nearest neighbour distances, which can be 

attributed to their larger atomic radius. One can see that with 

the parameters of this potential, value for the de-Boer 

parameter for Na turns out to be 0.174. Here,










 m

h   

ε is the depth of the inter-atomic potential and h  is the 

Planck’s constant.    here is much less than one. Therefore, 

one can treat molten Na as essentially a classical system. 

the experimentally measured static pair correlation function 

 rg [18] and the interaction potential  rV  when collectively 

substituted in expression (5) to yield the Einstein 

frequency
E and 

0r for liquid Na to be 1.307x10
13

 s
-1

 and 3.5 

Å, respectively. While these two entities are further 

substituted into expression (2) to evaluate
 , the static 

structure factor  S is evaluated by the Fourier transform of 

static pair correlation function  rg using expression (4). The 

characteristic relaxation time   , introduced in the present 

form of modified microscopic theory to incorporate distinct 

correlations, is evaluated by substituting calculated values of 

 and  S in to expression (3) and value of the diffusion 

coefficient, D, is adjusted to obtain the fulfilment of the 

zeroth sum rule for a given value of wave-vector  . The 

detailed dynamical structure factors can now be calculated 

using expression (1). 
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Figure 1: Variation of the dynamical structure factor,  ,S   of liquid 

sodium at 390 K with frequency, , at : (——) at =1.6 Å-1 , = 1.85 Å-1 

, = 2.0 Å-1 and  =2.2 Å-1. 

 

The dynamical structure factors,  ,S   , using expression 

(1), have been calculated for thirteen wave-vector values: in a 

wide wave-vector range, 1.6 Å
-1

≤ ≤ 6.5 Å
-1

.The chosen 

range of wave-vector corresponds to  >
m , region of the 

static structure factor for which IXS values of  ,S have  

not been reported. The computed results for dynamical 

structure factors  ,S , as their variation with frequency, 
 

ω, have been shown for different values of in Figure 1: 

 =1.6 Å
-1

;  =1.85 Å
-1

;  =2.0 Å
-1

 and  =2.2 Å
-1 

with 

solid curve (────). Similar variations have been shown 

in Figure 2:  =2.5 Å
-1

;  =3.0 Å
-1

;  =3.5 Å
-1

and 

 =4.0 Å
-1 

with solid curve (────) and also in Figure 3: 

 =4.5 Å
-1

;  =5.0 Å
-1

;  =5.5 Å
-1

 and  =6.0 Å
-1 

and 

 =6.5 Å
-1 

with solid curve (────). In these 

computations, Deff is taken to be equal to the diffusion 
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coefficient occurring in expression (3). This can be 

evidently seen from the figures 1, 2, 3 that for higher wave 
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Figure 2: Variation of the dynamical structure factor,  ,S   of liquid 

sodium at 390 K with frequency, , at : (——) at = 2.5 Å-1 , = 3.0 Å-1 

, = 3.5 Å-1 and  =4.0 Å-1. 
 

vectors the dynamical structure factors are damped in 

appearance with no Brillouin peaks are observed, except 

for  =1.6 Å
-
1. This is in contrast to  ,S  calculated 

(and also measured experimentally through IXS) for smaller 

wave vector values,  <1.6 Å
-1

, reported previously [16], 

where clear shoulder peaks at ω = ωp have been observed. 
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Figure 3(a): Variation of Diffussion Co-efficient with wave-vector as 

discussed in text. 

 

The self-Diffusion coefficient turns out to be a parameter 

in the theory to fulfil the zeroth sum rule and hence, 

acquires the  -dependant form in the present theory. The 

obtained values of the diffusion coefficient have been 

shown in Figure 3(a) as against wave-vector k : with 

dashed curve (- - -). In the entire  -range of 1.6 Å
-1

≤ ≤ 

6.5 Å
-1

 , the overall variation of D is merely half an order 

and this can further be observed when including the previous 

study [16] in the smaller  region 0.3 Å
-1

≤ ≤ 1.46 Å
-1 

that 

the total variation of self-diffusion remains lesser than two  

orders. In Figure 4, computed results of C(κ,ω) , the 

current-2 correlation function deduced from the computed 

dynamical structure factors, using expression (6) for 

different values wave-vector k  has been shown as their 

variation against ω: (────)  = 1.6 Å
-1

; (────) 

 =1.85 Å
-1

; (────) = 2.0 Å
-1

; (────) = 2.2 Å
-1

; 

(────)  = 2.5 Å
-1

; (────) = 3.0 Å
-1

; (────) = 

3.5 Å
-1

;
 
(────)  = 4.0 Å

-1
; (────)  = 4.5 Å

-1
;
 

(────)  = 5.0 Å
-1

;
 
(────)  = 5.5 Å

-1
;
 
(────)  = 

6.0 Å
-1

; 
 
(────)  = 6.5 Å

-1
. Current-2 correlation   

functions are single-peak structures unlike 

dynamical structure factors that can exhibit two 

peaks, one at zero frequency position and another is 

shoulder peak at collective mode frequency position. The 

peak positions of current-2 correlation functions provide 

the collective mode frequencies of given liquid. 
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Figure 4: Current-2 correlation functions  for liquid Na at 390 K 

versus   for: (────) = 1.6 Å-1; (────)  = 1.85 Å-1; 

(────) = 2.0 Å-1; (────) = 2.2 Å-1; (────)  = 2.5 Å-1; 

(────) = 3.0 Å-1; (────) = 3.5 Å-1; (────)  = 4.0 Å-1; 

(────) = 4.5 Å-1; (────)  = 5.0 Å-1; (────)  = 5.5 Å-1; 

(────)  = 6.0 Å-1;  (────)  = 6.5 Å-1. 
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In figure 5(a), the dispersion relation for liquid Na at 390 

K has been shown with a solid-square curve (-■-). The 

values of ωp are the peak positions of computed current-2 

correlation functions for different wave-vector values 

when plotted against the frequency ω. As can be observed 

from the figure, the frequencies of collective modes, ω , 

first decreases to a minimum at  =1.85 Å
-1

, wave-vector 

corresponding to peak position of static structure factor to 

complete the first Brillouin zone and then keep increasing 

for higher wave-vector. A mild second minima at  =3.5 

Å
-1

 has also been seen in the figure. Hence, the usual form 

of dispersion relation has been obtained for liquid Na in 

the entire wave-vector range. Figure 5(b) displays with a 

solid-circle curve the velocities of sound as deduced from 

the dispersion relation of figure 5(a) and have been plotted 
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Figure 5(a): Dispersion relations for liquid Na at 390 K from present 

theoretical calculations and deduced from current-2 correlation function: ωp 

vs.  : (-■-). 

Figure 5(b): Velocity of sound in liquid sodium at 390 K as depicted from 

figure 5(a) vs.  wave-vector,  : (─■─). 

 

as their variation against κ. One can compute the sound 

velocity from the linear region of the dispersion relation, 

obtained for smaller κ values [16], the region not 

considered here.  

 

5. Conclusion and Future Scope  

This may be concluded from the study that the collective 

dynamics of liquid Na at 390 K can be predicted through a 

theoretical approach that involves the solution of equations of 

motion of moving particles of the system. This approach, 

modified microscopic theory, defines relaxation time to 

include distinct particle correlations and yields diffusion 

coefficient, collective modes, and the velocity of sound. 

Collective dynamics of a variety of liquid with different 

physical conditions can, therefore, be predicted with this 

theoretical approach for various applications. 
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