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Abstract— Theoretical calculations for the coherent dynamical structure factors of an alkali metal, liquid rubidium (

85
Rb) at a 

temperature of 338 K, fairly above the melting temperature of liquid metal and corresponds to a mass density of 1.45 g/cm³. Are 

reported. Melting temperature of rubidium is 312.45K, and at the considered temperature of 338 K, the liquid system is 0.945 

times rarer as compared to that at room temperature.  Theoretical results are provided for a wave-vector range of 0.2 Å⁻¹ to 5.0 

Å⁻¹. The wave-vector range corresponds up to the primary and secondary maxima positions in the structure factor of liquid at 

the considered physical conditions of temperature and density. The modified microscopic theory of collective dynamics in 

simple liquids is applied for the present computations. The theory turns out to be a self-consistent approach and produces the 

equilibrium dynamics of a liquid with the acquaintance of the inter-particle interaction. Along with the dynamical structure 

factor, other dynamical properties; diffusion coefficient the dispersion relation and sound velocity liquid rubidium under these 

conditions, have also been reported. 

 

Keywords— Dynamical structure factor, Alkali metal, Inter-particle interaction potential, Diffusion coefficient; Modified 
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1. Introduction  

The equilibrium dynamics of fluids, unlike crystalline ordered 

state of solids and complete disorder of ideal gases, is 

intensively complex and is much harder to explore. These 

intricate dynamical states of any fluid, characterized by the 

simultaneous presence of single as well as collective motion 

can be expressed through space-time dependent correlation 

function. The dynamical structure factor is the Fourier 

transform of this Van-Hove space-time dependent correlation 

function [1]. The dynamical structure factor describes the 

response of any liquid to a weak disturbance and therefore 

provides a detailed vision of the collective behaviour of its 

constituent atoms. 

 

Experimental methods like inelastic X-ray scattering (IXS) 

and thermal neutron inelastic scattering (INS) are frequently 

used to examine the collective motion of interacting particles. 

However, these techniques have certain limitations. In INS, 

the substantial incoherent scattering due to neutron-nucleus 

interactions confounds the coherent and incoherent dynamical 

structure components. In contrast, IXS [2] can provide purely 

coherent data when performed with high-resolution 

synchrotron radiation sources. Liquid rubidium (Rb), with an 

atomic mass of 85.47 a.m.u., is a far superior coherent 

scatterer [3] of neutrons as compare to liquid sodium [4] and 

liquid cesium [5], the other two alkali metals, boasting a 

coherent to incoherent scattering cross-section ratio of around 

1800 (values for cesium and sodium are 16.0 and 0.99, 

respectively) and the INS spectra of liquid Rb is 

predominantly coherent. This makes rubidium an excellent 

candidate for the prediction of the collective modes in a 

strongly correlated liquids. Some of the experimental studies 

from neutron scattering are available in the literature [6-8] 

wherein liquid rubidium displays a well-known three-peak 

structure in its dynamical structure factor, even at high 

momentum transfers, similar to the behaviour observed in the 

hydrodynamic regime. However, these studies essentially are 

confined to the closest vicinity of the melting temperature 

only and higher temperature dynamical states of the liquid 

alkali remained unreported. To the best of my knowledge, no 

experimental data for collective dynamics at this temperature 

and density conditions of Rb in its liquid state have been 

provided by any of the INS or IXS studies. 

 

This paper is described in five sections. Section 1, provides 

an introductory definition of the research work carried in the 

present study and section 2 reviews the earlier work done in 

the field. In section 3, mathematical formalism for the applied 

theory is described. Section 4, carries all the results from 
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present computations, Figures and the associated discussions 

for the outcomes. In section 5, conclusions drawn from the 

study and the future scope are narrated. 

 

2. Related Work  

The current predictions are based on the modified 

microscopic theory, where the microscopic behaviour of any 

condensed system is examined to determine the density 

response function. This complex function, which includes 

both real and imaginary parts, describes the space-time-

dependent fluctuations in the fluid's density in response to a 

weak perturbation. Through a Fourier transform, the 

imaginary part of the density response function and the 

dynamical structure factor are connected via the Fluctuation-

Dissipation theorem, which is the prime concern of this study. 

To include inter-particle correlations that were not addressed 

in the previous theory, a characteristic relaxation time is 

introduced [9]. This time is dependent on several physical 

factors, including the static structure factor, density, 

temperature, mass, interaction potential. In this theory, the 

diffusion coefficient is made to be a wave vector dependent 

entity which acquires a specific value for each wave-vector. 

Hence, while incorporating appropriate representation of the 

intermediate self-scattering function, the number of arbitrary 

parameters are reduced through such an adjustment. 

 

The modified model has been successfully applied to describe 

the collective dynamics of several liquids [10-19]. The 

present communication represents the prediction of the 

collective dynamics of liquid rubidium at a temperature of 

338 K, aiming to describe the response of the liquid to an 

external radiation and compute the dynamical structure factor 

for liquid Rb. 

 

3. Theory and Mathematical Formalism 

Microscopic theory analyzes the density fluctuations to 

describe the motion of particles. To gain a deeper 

understanding of the complex space-time-dependent 

correlation functions, they are defined and approximated to 

obtain results for the dynamical structure factor. In this earlier 

version of the theory distinct time correlations were not 

considered while calculating the dynamical structure factors. 

As a result, the dynamical structure factors produced were 

excessively damped and did not match the experimentally 

observed spectral line shapes. To address this limitation, 

Tewari et al. [9] attempted to modify the theory by entailing a 

characteristic relaxation time which takes in to account for 

the missing correlations. The microscopic theory, in its 

modified version, has successfully explained the dynamical 

structure factors of several liquids. 

 

The dynamical structure factor in this form of theory acquires 

the following form: 
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Here, in the expression (1), β’’ = Deff κ
2
, Deff is diffusion 

coefficient turns to be frequency dependant. 

 β=(kBT)
-1 

and, ϒ = τ(κ)
-1

,  

The relaxation time τ(κ)
-
is defined as follows: 
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Where,   = D
2 , with D being κ-dependant diffusion 

coefficient. 

m is the atomic mass and  S  is the static structure 

factor. 

 S can be obtained from the Fourier transform of the 

static pair correlation function,  g r  from the following 

expression: 
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Where, E , is the elastic frequency  given as follows: 
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Here,  rV  is the inter-atomic potential. 
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0r  occurred in the expression (4) is obtained on applying 

following approximation:  

   02

2

rrArg
z

V





   

       (6) 

The peak of the delta function is r = 0r  and z is the space 

coordinate. 

 

 

 is the current-current correlation function and  is 

given by the following expression: 

    

              

       (7) 

 

 

4. Results and Discussion 

As described in the above section of mathematical formalism, 

evolution of any fluid towards the equilibrium dynamics can 

be computed using the modified microscopic theory which 

further requires the necessary information about the inter-

particle interaction potential with which the constituent 

particles are interacting with each other. One, therefore, has 

to find out a suitable interaction potential, of considered 

liquid at given physical conditions. In order to work out the 

dynamical structure factors this is more appropriate to entail 

an interaction potential which is generated through or is 

connected to the static structure factor instead of other 

methods including algebraic mathematical work out. For this 

reason, an interaction potential acting between constituent 

particles of liquid rubidium as proposed by Bretonnet and 

Jakse [20] at a nearby temperature (m.pt. 312 K) has been key 

in to present calculations. However, few other attempts to 

generate inter-particle interaction potential of liquid Rb, are 

also [21] available from the literature, this form of the 

potential has reproduced experimentally, measured static pair 

correlation function g(r), Fourier transform of the static 

structure factor [8] of liquid rubidium and hence, has emerged 

as an optimal selection for the present work. The suggested 

interaction potential is comprised of hard core and long range 

oscillator parts, acquires a typical form for liquid alkali metal. 

The interaction potential for liquid Rb has been compared to 

the inter-particle interaction potential of liquid lithium (Li) 

[22], which is the lightest among the alkali metals and are 

shown in Figure 1: solid curve (────) liquid Rb at 319 K 

and dash-dot curve (− ∙ −) NPA potential for liquid Li at 475 

K. The interaction potentials compared in Figure 1 are near 

their melting temperatures and can be observed to be different 

from each other. The depth for interaction potential, 

corresponding to the minimum of the curve, of liquid 

rubidium is much shallower than that for liquid Li, whereas 

oscillations occurred due to the presence screening effect of 

degenerate gas of electrons, exhibit wider variations in liquid 

Rb as compared to that in lithium. This difference can be 

attributed to the difference in their atomic sizes and to the 

difference in rs, (rs for Li = 1.73Å and Rb =5.043 Å). The 

larger atomic radius of a Rb atom has also been resulted in a 

larger hard core as compared to the Li, which has the smallest 

atomic radius among alkali metals. 
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Figure 1: Variation of  rV  with inter-atomic distance r: (───) 

liquid rubidium at 319 K; (— —) liquid Li at 475 K. 

 

This form of inter-particle interaction potential, yields the 

maximum Einstein frequency 
E , through mathematical 

equation (5),and ro, from expression (6), for liquid Rb, 

respectively as: 8.52 × 10¹² s⁻¹ and 4.66 Å. The pair 

distribution function g(r), used in these calculations is that 

obtained from the experimental data of static structure factor 

[22] when Fourier transformed and also regenerated through 

this form of the interaction potential of liquid Rb [20]. 
E , ro 

and ωκ as calculated from the expression (4), are substituted 

into the mathematical equation (2) to calculate the relaxation 

time. This form of single characteristic relaxation time, τ(κ) is 

built-in to the modified microscopic theory to take in to 

account the distinct particle correlations at different κ values. 

τ(κ) essentially considers the wave-vector-dependent 

correlations to describe the time-evolution of distinct 

properties such as particle positions or densities. Essentially, 

the time scale for the system to regain equilibrium after a 

perturbation is represented. 

The diffusion coefficient, D, is appeared as a parameter to 

certify the justification of the zeroth sum rule and is governed 

by expression (2). The zeroth sum rule is typically a 

normalization condition that ensures the correct shapes of the 

dynamical structure factors over all ω–ranges. Hence, the 

suggested modification in the microscopic theory leads to 

fulfillment of all sum rules of liquids. the detailed dynamical 

structure factors S(κ,ω) is now calculated using the relaxation 

time and diffusion coefficient, These structure factors are 

defined to describe the fluctuations of the system in both 

space and time, and they are crucial for understanding the 

dynamic behaviour of a system. They are derived using 

expression (1), which likely relates S(κ,ω), τ(κ), and diffusion 

coefficient, D.  
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Through expression (1), the dynamical structure factors  for 

wave-vector values, ranging from 0.2 Å
-1

 to 5.0 Å
-1

, have 

now been computed. And the results to demonstrate their 

variation with  
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Figure 2: Dynamical structure factor,  ,S    versus 

frequency, , for liquid rubidium at 338 K: (—■—) present theory 

at =0.2 Å-1 , = 0.6 Å-1 , = 1.0 Å-1 and  =1.75 Å-1; (●) 

experimental results [6] at 319 K. 

 

frequency ω, have been plotted in Figure 1 for  =0.2 Å
-1

; 

 = 0.6 Å
-1

;  = 1.0 Å
-1

 and  = 1.75 Å
-1 with a solid-

square curve (− ■ −) and in Figure 2 for  = 2.5 Å
-1

;  = 

3.0 Å
-1

;  = 4.0 Å
-1

 and  = 5.0 Å
-1

 with a solid-square 

curve (− ■ −). In this process, effective diffusion coefficient, 

Deff remains constant and is equal to the diffusion coefficient 

given in expression (2), without any variation with frequency. 

As shown in two figures, increase in wave-vectors has lead to 

damping of the dynamical structure factors are damped and 

display features only central peaks, without shoulder peaks, 

except at  = 0.2 Å
-1

. For  > 0.6 Å
-1

,  
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Figure 3: Dynamical structure factor,  ,S   of liquid rubidium 

at 338 K versus frequency, : (—■—) present theory at =2.5 Å-1 

, = 3.0 Å-1 , = 4.0 Å-1 and  =5.0 Å-1. 

Brillouin peaks have not appeared.
 
As no experimental 

data at considered temperature of 338 K is available, the 

evaluated data is compared with the data from the INS 

study [3] at melting point, 312 K. These results from 

previous experimental study have been shown in Figure 1: 

with solid circles (●) at  = 0.63 Å
-1 

and  = 1.01 Å
-1

.  

The comparison indicates the damping of structures with 

an increase in the temperature as near melting point, the 

dynamical structures are rather sharp and exhibit shoulder 

peaks up to  =1.01 Å
-1

.  

 

The only fitting parameter in the theory, the self-diffusion 

coefficient, acquires wave-vector dependant form, have been 

obtained in the process of generating dynamical structure 

factors. The vital sum rule followed by the generated 

structures, the, zeroth sum rule was not justified in that 

generated by the older microscopic theory [23]. Further, the 

coefficient of diffusion is essentially connected to the 

estimation of the relaxation time. In Figure 4(a), the variation 

in [Dκ
2
]
-1

, representing the diffusive time occurred in the 

present theory, has been drawn as against the wave-vector, 

 : solid curve (────). In Figure 4(b), the relaxation 

time, as described and calculated from the expression (2), 

has been plotted against wave-vector,  : with solid curve 

(────).  
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Figure 4(a): Variation of  1/Dκ2 with κ : (───). 

Figure 4(b): Variation of characteristic relaxation time with κ: 

(───). 

 

This can be seen from the figure that for  < 1.0 Å
-1 

the 

diffusive time decreases by an order and thereafter, for 

 = 1.0 Å
-1 

to 5,0 Å
-1

, remains varying in half an order 

only. The characteristic relaxation time, on the other hand, 

decreases to an order with an increase in  up to  ~0.5 

Å
-1

., then to another an order up to  =2.5 Å
-1

, and 

increases within half an order thereafter for higher wave 

vectors. The overall variation in [Dκ
2
]
-1

 is about an order, 

whereas relaxation time varies for two orders in the entire 

 –range. This can further be observed that the relaxation 
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time for entire  -range, specifically for 0.6 Å
-1

 ≤   ≤ 3.0 

Å
-1

, diffusive time leads by more than half an order to the 

relaxation time.  
 

In Figure 5(a), the variation of ωp, the collective mode 

frequencies, with under different considerations, have been 

plotted: solid squares (■) ωp from present theory; and solid 

curve (───) ωκ from expression (4).  The values of ωp have 

been deduced from the current-2 correlation functions, 

which are related to the evaluated dynamical structure factors 

from expression (7). The frequencies of collective modes 

correspond to the peak positions of the current-2 correlation 

function for a given wave-vector. As seen in the figure, the 

collective mode frequencies initially increase with an increase 

in the wave-vector, to a maximum at nearly  = 1.0 Å
-1

, 

followed by a decrease up to  =2.5 Å
-1 to attain a 

minimum here, and with further increase in the wave-

vector increases thereafter.  This pattern reflects the typical 

trend for the variation of the dispersion relation. The variation 

of wave-vector dependant frequencies ωκ with  is similar 

in pattern to the former frequency except that of exhibiting 

a second minimum at nearly  =3.0 Å
-1

. Moreover, they 

are larger as compared to the other frequencies, ωp. 
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Figure 5(a): Dispersion relations for liquid Rb at 338 K under 

various considerations: (■) p  deduced from current correlation 

function;  ( - - -) ωκ. from expression (4). 

 

Figure 5(b): Velocity of sound in liquid rubidium at 338 K as 

depicted from figure 5(a) vs. wave-vector,  : (─■─). 

 

The sound velocities as calculated from the dispersion 

relation ωp versus  (shown in Figure 5(a)) have been 

displayed in Figure 5(b) represented by a solid-square curve 

(-■-). The results have been plotted against wave-vector,  . 

Theoretically, one may expect these computed sound 

velocities to be aligned with the experimentally measured 

values in the region where   approaches 0. The sound 

velocity depicted from the linear region of the dispersion 

curve, corresponding to  near 0, turns out to be 1190 m/s 

as against the experimental results (~1247 m/s) [24]. 

 

5. Conclusion and Future Scope  

This can be concluded from the study that the modified 

microscopic theory is able to provide the collective dynamics 

of liquid Rb at 338 K and offers a substantial enhancement 

over the older theory. This theory includes the inter-particle 

interactions and inculcates the correlations between distinct 

particles by defining a characteristic relaxation time that 

incorporates inter-particle interactions. It enables the 

determination of other important properties including the 

diffusion coefficient, collective modes, and sound velocity.  

The theory can be applied further for the prediction of 

collective dynamics of a variety of other fluids subject to 

different physical conditions. 

 

The reported results can further be worked out to calculate 

other transport properties of the liquid potassium. 

 

Data Availability  

Data generated is included in the manuscript. 

 

Conflict of Interest 

The author declares no competing interests. 

 

Funding Source 

none 

 

Authors’ Contributions  

Grima Dhingra: conceptualization, calculations, manuscript 

writing with figures preparation, reviewing and editing 

 

Acknowledgements 

None 

 

References  
 
[1] L. van Hove., “Correlations in space and time and Born 

approximation scattering in systems of interacting particles”, Phys. 

Rev., Vol.95, pp.249-262, 1954. 

https://doi.org/10.1103/PhysRev.95.249 

[2] E. Burkel, Inelastic Scattering of x-rays with very high energy 

resolution(Springer-Verlag, Berlin, 1991. ISBN-13: ‎ 978-

3662150092 

[3] J.R.D. Copely and J.M. Rowe, “Short-Wavelength Collective 

Excitations in Liquid Rubidium Observed by Coherent Neutron 

Scattering”, Phys. Rev. Letters, Vol.32, pp.49-52, 1973. 

https://doi.org/10.1103/PhysRevLett.32.49 

[4] C. Morkel and W. Glaser, “Single Particle Motion in Liquid 

Sodium”, Phys Rev. A, Vol.33, pp.3383-3389, 1986. 

https://doi.org/10.1103/PhysRevA.33.3383 

[5] T. Bodensteiner, C. Morkel, W. Glaser and B. Dorner, “Collective 

Dynamics in Liquid Cesium near the melting point”, Phys. Rev. A, 

Vol.45, pp.5709-5720, 1992. 

https://doi.org/10.1103/PhysRevA.45.5709 

[6] A. Rahman, “Density fluctuations in liquid rubidium. Il. Molecular-

dynamics calculations”, Phys. Rev. A, Vol. 9, pp.1667-1671, 1974.. 

https://doi.org/10.1103/PhysRevA.9.1667 



Int. J. Sci. Res. in Physics and Applied Sciences                                                                                       Vol.13, Issue.1, Feb. 2025   

© 2025, IJSRPAS All Rights Reserved                                                                                                                                         6 

[7] A. Rahman, “Propagation of Density Fluctuations in Liquid 

Rubidium: A Molecular-Dynamics Study”, Phys. Rev. Lett. , 

Vol.32, pp.52-54, 1974. https://doi.org/10.1103/PhysRevLett.32.52 

[8] J.R.D. Copley, J.M. Rowe, “Density fluctuations in liquid 

rubidium. I. Neutron-scattering Measurements”, Phys. Rev. A, 

Vol.9, pp.1656-1666, 1974. 

https://doi.org/10.1103/PhysRevA.9.1656 

[9] S.P. Tewari and Surya P. Tewari, “Theory of collective motion in 

liquids”, J. Phys. C: Solid State Physics, Vol. 8, pp. L569-L572, 

1975.https://doi.org/10.1088/0022-3719/8/24/001 

[10] G. Dhingra, “Correlated Motion of Particles in Liquid Sodium 

Metal”, International Journal of Scientific Research and Reviews, 

Vol. 8, Issue 1, pp. 1085-1091, 2019. 

[11] G. Dhingra, “Dynamical Modes in Liquid Mercury along Liquid-

Vapour Curve”, International Journal of Scientific Researchin 

Multidisciplinary Studies, Vol.8 Issue.9, pp.1-5, 2022. 

https://doi.org/10.26438/ijsrpas/v8i9.15  

[12] G. Dhingra, “Microscopic Transport Phenomena in a Liquid Alkali 

Metal: K39”, International Journal in Scientific Research in 

Physics and Applied Sciences, Vol.7, Issue.1, pp.56-59, 2019. 

https://doi.org/10.26438/ijsrpas/v7i1.5659  

[13] S.P. Tewari, G. Dhingra and P. Silotia, “Collective Dynamics of a 

Nanofluid: Fullerene, C60”, International J. of Mod. Phys. B., 

Vol.24, pp.4281-4292, 2010. 

https://doi.org/10.1142/S0217979210055974 

[14] S.P. Tewari, G. Dhingra, P. Silotia and J. Sood, “Theory of 

collective dynamics of liquid polyvalent metal: Hg”, Phys.   Letters 

A, Vol.368, pp.412-418, 2007. 

https://doi.org/10.1016/j.physleta.2007.04.035  

[15] S.P. Tewari, G. Dhingra, P. Silotia and J. Sood, “Microdynamics of 

a monoatomic liquid metal”, J. Non-Crystalline Solids Vol. 355, 

pp.2522-2527, 2009.  

https://doi.org/10.1016/j.jnoncrysol.2009.08.014 

[16] S.P. Tewari and Surya P. Tewari, “Zero frequency dynamical 

structure factor of liquids”, Phys. Letters, Vol.56A, pp.99-100, 

1976. https://doi.org/10.1016/0375-9601(76)90157-2 

[17] S.P. Tewari and Surya P. Tewari, “Theory of long wavelength 

collective motion in liquids”, Phys. Letters, Vol.65A, pp.241-243, 

1978. https://doi.org/10.1016/0375-9601(78)90162-7 

[18] S.P. Tewari, J. Sood and P. Tandon, “Collective dynamics of liquid 

alkali metals Cs and Rb”, J. Non-Crystalline Solids, Vol.281, 

pp.72-80, 2001. https://doi.org/10.1016/S0022-3093(00)00437-3 

[19] S.P. Tewari, and J. Sood, “Collective Dynamics of Liquid Al”, 

Modern Phys. Letters, Vol.18, pp.811-816, 2004. 

https://doi.org/10.1142/S0217984904007293 

[20] J.L. Bretonnet, N. Jakse, “Use of integral-equation theory in 

determining the structure and thermodynamics of liquid alkali 

metals”, Phys. Rev. B 50 (1994) 2880 

https://doi.org/10.1103/PhysRevB.50.2880 

[21] D.L. Price, K.S. Singwi, M.P. Tosi, “Lattice Dynamics of Alkali 

Metals in the Self-Consistent Screening Theory “, Phys. Rev. B 2 

2983-2999, 1970. https://doi.org/10.1103/PhysRevB.2.2983 

[22] M. Canales, L.E. Gonzalez, J.A. Padro,   “Computer simulation 

study  of liquid lithium at 420 and 843 K”, Phys. Rev. E, Vol.50 

pp.36-56, 1994. https://doi.org/10.1103/PhysRevE.50.3656 

[23] J. Hubbard and J.L. Beeby, “Collective motion in liquids”, J. Phys. 

C, Vol.2, pp.556-574, 1969. https://doi.org/10.1088/0022-

3719/2/3/318 

[24] A. D. Pasternak, ”Sound-wave velocities in liquid alkali metals 

studied at temperatures up to 1500c and pressures up to 0.7 Gpa”, 

Mater. Sci. Eng. 3, 65(1969). https://doi.org/10.1016/0025-

5416(68)90019-0 
 

 

 

 

 

 

 

AUTHORS PROFILE  

Dr. Grima Dhingra is an alumni of 

Department of Physics and 

Astrophysics, University of Delhi. She 

completed her M.Sc. in 2002 and her 

Ph.D. in 2009 from the department of 

Physics and Astrophysics, University of 

Delhi. She gained her doctorate degree 

with specialization in Condensed Matter 

Physics. Her core thrust areas of research include Fluid 

Dynamics, Molecular Dynamics Simulation, Cryptography 

and Plasma Physics. The peer has over fifteen research papers 

published in peer-reviewed and indexed international 

journals. She has presented many of her research papers in 

different international and national conferences. Dr. Grima 

has conducted successfully minor project during 2012-14 

granted by UGC to her as principal investigator.  She is a life 

member of Indian Crystallographic Society (ICS) and also of 

Materials research society of India (MRSI). She is working as 

Associate Professor in the Department of Physics, M.D. 

University, Rohtak, Haryana and bears an experience of 3 

years of UG and 14 years of PG teaching along with a 

research experience of 17 years. 

 


