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Abstract— Fluid dynamical instabilities in magnetized partially ionized dense dusty plasma are studied by taking into account 

relative flow between dust and neutral gas.  Following Hurwitz criterion, the onset criteria for instabilities are derived for 

different densities of the neutral gas and dust components across the interface. It is found that in case of no significant magnetic 

field stabilization occurs not only due to dust neutral gas collisions but due to relative flow also.  Our result might be useful in 

many situations of astrophysical magnetized dusty plasma namely comets and circumsteller dusty disk e.g. T-Tauri stars. 
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I. INTRODUCTION 

Instabilities are ubiquitous in partially ionized dusty plasmas. The study of instabilities in partially ionized dusty plasmas has 

drawn considerable interest in recent past in many different astrophysical contexts such as accretion disks [1] and relativistic 

jets [2]. The Rayleigh-Taylor instability may be responsible for the formation of waves and bubbles in the Earth's equatorial 

region [3,4]. D'Angelo [5] studied the Rayleigh-Taylor instability in such a dusty plasma where the dust grains have been 

assumed to be massive. He investigated the effects of negatively and positively charged dust grains on the gravitational 

Rayleigh-Taylor instability and found that negatively charged dust have stabilizing effects. A flute like instability which is 

different from the usual Rayleigh-Taylor instability is investigated by Varma and Shukla [6]. Another important instability, 

which occurs when adjacent layers of fluid are in relative motion, is called Kelvin-Helmholtz instability and has been analyzed 

for a conductive magnetized incompressible fluids streaming along the direction of the magnetic field[7].  

 

Goertz [8] described various phenomena and instabilities occurring in dusty plasma of solar system in his review paper. Shear 

flows play an important role in the dynamics of partially ionized dusty plasma because they induce the unstable Kelvin-

Helmholtz modes in various physical situations namely, superwinds of primeval galaxies in the intergalactic medium [9] and 

the amplification of self induced magnetic fields in the early Universe [10]. The existence of fluid dynamical instabilities for 

the partially ionized flow have been discussed by Kamaya and Nishi [11]. They found that the instability of the Alfve'n wave 

for any n  and the two fluid instability for any ' 'k  if 1n  . The Alfven instability appears when its wave number is smaller 

than a critical value. 

 

Birk [12] derived criteria for unstable Rayleigh-Taylor modes in partially ionized dusty plasma for different density 

characteristics of the neutral gas and dust components across the interface and found that dust-neutral gas collisions limit the 

range of unstable wavelengths. Shear flow instabilities in magnetized partially dense dusty plasma have been studied by Birk 

and Wiechen [13]. They derived onset criteria for instabilities with and without electrical resistivity and found that momentum 

exchange between the dust and neutral gas stabilized long wavelength perturbations. Excited unstable modes lead to the 

formation of current sheets and vortices. 

 

In the present paper, we study the fluid dynamical instabilities in magnetized partially ionized dense dusty plasma by taking 

relative flow between dust and neutral gas. The plan of the paper is as follows. In section 2, the problem is formulated in terms 

of basic equations governing the motion. Instabilities criteria are obtained and compared with previous studies in section 3. 

http://www.isroset.org/
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II. THEORY AND BASIC EQUATIONS 

 

We consider a magnetized partially ionized  dense dusty plasmas whose dynamics are governed by dust and neutral gas 

components. The dynamics of dusty plasma are characterized by collective behavior for the parameter regime of ordering 

da d   , where ,a d and d  are the dust grain radius, the average inter-grain distance and the plasma Debye length. 

The electrons dynamics is not considered as the electrons have no significant influence on the overall behaviuor of dusty 

plasma. The plasma is considered quasineutral. So we have 

                                          i i d d en z n z n                (1) 

where n and z  are number density and charge number and the suffixes , ,i d e denote ion, dust and electron fluids respectively. 

Since the assumption of incompressibility holds very well for the perturbations with velocity amplitudes well below the dust-

neutral gas sound velocities with propagation time scales larger than sound time scales. The dynamics of fluids are taken 

incompressible ( . . 0)  
d n

v v .  The relevant equations governing the motion of dense dusty plasma are as follows [12]: 

 ( . ) 0d
d

t





  


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v  (2) 

 ( . ) 0n
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  


n

v  (3) 

Here ,d n  are the dust and neutral gas densities and d,n
v  are their velocities. The momentum equations for the charged 

components of the fluid dusty plasma where the ion and electron inertia are negligible in the considered dense dusty plasma, 

and neutral gas are given by 
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where , , ,d i e np are the dust, ion and neutral gas pressures. The symbols ,B g  and dn  are the magnetic field, the gravitational 

acceleration and the effective elastic collision frequency between the dust and neutral gas particles respectively. The electron 

partial pressure is usually negligible in the total pressure of charged components c d i ep p p p   . The magnetic induction 

equation  is 

 ( )
t


  


d

B
v B  (6) 

The resistivity, Hall effect as well as other small effect of magnetic field generation are not considered. 

We consider equilibrium state where the homogeneous magnetic field 0
B  is taken along the z -axis and the homogeneous 

gravitational field ˆ
yge g  We consider interface along the z -axis i.e along the equilibrium flow and magnetic field. The 

other equilibrium quantities on either side of the interface are of the form 
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III. DERIVATION OF ONSET CRITERIA 

 

A constant relative velocity of dust to the neutral gas is assumed 0
v with motion d0

v  in dust and n0
v  in  neutral gas and 


d0 n0

v v  is taken along the z -axis  and is such that 

  
d0 n0 0

v v v  (9) 

Let , ,  v B and p  denote the perturbed quantities for velocity, magnetic field, density and pressure due to a small 

disturbance to the system. Linearizing equations (1)-(6) about the equilibrium, we obtain 
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Fourier analyzing the perturbations by taking the following form  

 ( , , , ) ( )exp( )x zx y z t y t ik x ik z     (15) 

where  represents any of the perturbed field quantities of the considered  dusty plasma,   is the frequency, and  xk  and zk  

are  the  wavenumbers along x  and z   axes, we obtain 
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where 
2 2 2

x zk k k   and 0z ni k v    is Doppler-shifted complex frequency. 

We assume that surface perturbations ,d nyv decay exponentially
 

as , , (0)exp( )d ny d ny yv v k y   as .y   We take 
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denotes  the jump across the interface  0y   and an overline on physical quantity  represents the mean value of that quantity 

as  1
2 I II    .  From equations (16) - (21), the coefficient determinant C  of  
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where 
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The determinant 0C  gives the following characteristic complex polynomial  
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instability of the system, we follow the Hurwitz criterion described by Hurwitz [14] and Giaretta [15], and construct the test 

sequence 0 1 11,h h a   
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for the above complex polynomial. The condition for the instability is that any one of the 'ih s be negative. It can be obtained  

from the third Hurwitz sub-determinant 
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Hence the instability condition derived from equation (24) is given by 
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If we consider that there is no relative velocity 0v  i.e 0 0d nv v  then the instability condition reduces to 
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This condition for instability is same to that condition (15) obtained by Birk [12]. It can be observed from condition (25) that 

stabilization occurs for modes with 0zk  due to dust -neutral gas collisions only. The relative flow between dust and neutral 

gas tries to quench the instability, as one can see in case of no significant magnetic field the modes with wavenumber  
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are stabilized. If the neutral gas is homogeneous i.e. nI nII n    , the unstable modes grow in the dust fluid component 

and satisfy the criterion 
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In the absence of relative velocity 0v  the instability condition reduces to 
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If we simplify it, we obtain a similar condition to that condition (16) obtained by Birk [12] except a slight change in the 

constant coefficient of 
5

dI  and 
5

dII . If we consider homogeneous dust component i.e. dI dII d    and inhomogeneous 

neutral gas, the unstable growing modes  satisfy the following  condition 
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In the absence of relative velocity 0v   this criterion reduces to 
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which is similar to condition (18) obtained by Birk [12]. 

 

IV. CONCLUSIONS 

 

In this paper, we have studied the effect of flow on fluid dynamical instabilities in magnetized partially ionized dense dusty 

quasineutral plasma with dynamics governed by dust and neutral  gas components. The electron dynamics is not considered as 

electrons have no significant influence on the overall behaviour of dusty plasma.  The instability conditions have been derived 

for three different cases. Thus, the onset criteria for unstable  modes obtained by Birk [12] have been modified in  the presence 

of relative  flow in dust and neutral gas. The relative flow between dust and neutral gas has stabilizing effect on the system. 

The results  might be useful  in many situations of astrophysical  magnetized dusty plasmas  namely comets and circumstellar 

dusty disks e.g. T-Tauri stars. 
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