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Abstract— Following the techniques of non-equilibrium Green function theory for quantum transport, the transmission 

probability for the electron transport process through the system of linear triple quantum dots arranged in series and 

parallel geometry has been investigated in the presence of Coulombic interaction. The mean field approximation technique 

has been applied to decouple the higher order Green functions, which contain Coulomb interaction in their equations of 

motion. The Green functions so obtained have been incorporated in the derivations for the electron transmission 

coefficient. The transmission coefficient has been calculated numerically and the role of inter-dot tunneling rate in the 

behavior of transmission coefficient has been investigated. In series case, the signatures of merging of three dots to form a 

single big dot become visible in the transmission peak when inter-dot tunneling exceeds lead-dot coupling strength. 

Whereas, in the parallel configuration, the transmission probability peaks display the clear signs of Fano peaks when inter-

dot tunneling is turned on, which indicates the inter-dot tunneling induced Fano interference occurring during the electron 

transport. 
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I.  INTRODUCTION  

 

Among the low dimensional quantum systems, the 

quantum dots (QDs) are known to be the smallest man-

made solid state nano-systems having discrete energy 

levels and atomic like properties, hence regarded as 

artificial atoms [1]. The Electronic transport process in 

quantum dot (QD) systems had been an area of enormous 

research interest during the past three decades [2,3,4]. It is 

possible to fabricate nano-structures with two or more QDs 

weakly coupled with each other by inter-dot tunnel 

barriers, which may exhibit molecular like states. The 

phenomena of electronic transport via single QD and 

double QD systems, has been explored extensively during 

past three decades [5,6]. Whereas, the theoretical studies 

related to the transport through triple quantum dot (TQD) 

structures have not been carried out in past as much as 

through the single and double QD system. But, in recent 

years, the linear arrays of dots with more than two QDs 

have attracted significant research attention. The novel 

applications of QD systems are anticipated in the field of 

quantum computing  and QD solar cells [7,8,9,10,11]. 

Hence, it is increasingly important to explore the spectral 

and electron transport phenomena in the QD systems 

which involve more than two dots placed in between the 

leads. 

 

In recent years, few theoretical attempts were made to 

investigate transport through TQD systems [12]. But, the 

scope was limited to the non-interacting regime. But, as far 

as we know, no theoretical investigation, related to the 

electron transport through TQD system, takes Coulomb 

interaction into consideration. This motivates us to 

theoretically investigate the electron transmission through 

TQD system in Coulomb blockade regime, where a strong 

Coulomb correlation influences the electron flow through 

the system. 

 

The system under investigation is a linear array of three 

QDs, which we refer to as TQD system. These QDs are 

tunnel coupled with each other with inter-dot coupling 

strength 𝑉𝑑 and with two leads (having different electron 

chemical potentials) with lead-dot coupling 

strength 𝛤𝐿(𝑅). The difference in their electron chemical 

potentials leads to the flow of electrons from one lead to 

another via TQD system. The leads are of macroscopic 

size, having band like spectrum; whereas, QDs are having 

discrete spectrum. Therefore, the flow of electron through 

TQD system is typically a resonant tunneling process 

involving quantum transport phenomena. Experimentally, 

all the essential parameters like Fermi level of QDs, inter-

dot coupling and coupling QDs with leads can be 

controlled externally. 

 

http://www.isroset.org/
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Figure. 1. A typical TQD system in (a) series (b) parallel 

configuration. Three QDs are weakly tunnel coupled to left 

(right) lead with coupling strength ΓL(R) and with each other with 

inter-dot coupling Vd. 

 

For completeness, we intend to work on both, series and 

parallel configurations of linear TQD systems (Fig. 1), in 

the presence of on-dot Coulomb interaction. We have 

made use of theory of non-equilibrium Green function 

(NEGF) formalism [13]. We have derived the QD Green 

functions (GFs) analytically with the help of equation of 

motion (EOM) method [14]. Further, we have presented 

the expression for the electron transmission coefficient in 

terms of these GFs. In numerical calculations, the electron 

transmission coefficient has been represented graphically. 

To present the effect of inter-dot coupling, we tune the 

value of Vd over a wide range. The results show the merger 

of three QDs in series case for strong inter-dot coupling 

and clear signatures of Fano peaks in the plots of 

transmission probability for parallel case, revealing the 

occurrence of Fano effect in the given parallel TQD 

configuration. 

 

Remaining part of the paper discusses the following: 

Section-II discusses the structure of model Hamiltonian for 

both series and parallel topologies of TQDs, followed by 

the analytical results of derivations for QD Green functions 

in Section-III. The expression for transmission probability 

has been derived in Section-IV and numerical results have 

been discussed in Section-V. A briefing of conclusions has 

been presented in the Section-VI. 

 

II. MODEL HAMILTONIAN FOR A TQD 

 

It is customary to make use of the Anderson model to setup 

a theoretical model for a typical QD system attached to 

leads [15,16]. The model Hamiltonian for a TQD system 

shall have three components such that total Hamiltonian 

can be written as: 

 

   𝐻 = 𝐻𝐿𝑒𝑎𝑑𝑠 + 𝐻𝐷𝑜𝑡𝑠 + 𝐻𝑇𝑢𝑛𝑛𝑒𝑙𝑖𝑛𝑔  (1)  

     

For a TQD systems shown in Fig. 1 [(a) and (b)], the 

model Hamiltonian in expanded form can be written as: 

 

(a) Series configuration: 

𝐻 = ∑𝑘𝜎𝜀𝑘 
𝐿 𝑎𝑘𝜎

† 𝑎𝑘𝜎 + ∑𝑝𝜎𝜀𝑝   
𝑅 𝑏𝑝𝜎

† 𝑏𝑝𝜎 +   ∑𝑖𝜎𝜀𝑖𝑐𝑖𝜎
† 𝑐𝑖𝜎 +

∑𝑖𝑈𝑖𝑛𝑖↑𝑛𝑖↓ + [Σ𝑘𝜎𝑉𝑘
𝐿𝑐1𝜎

† 𝑎𝑘𝜎 +  Σ𝑝𝜎𝑉𝑝
𝑅𝑐3𝜎

† 𝑏𝑝𝜎 +

Σ𝜎𝑉𝑑  (𝑐1𝜎
† 𝑐2𝜎 +  𝑐2𝜎

† 𝑐3𝜎) + 𝐻. 𝐶. ]         

(2) 

  

(b) Parallel configuration: 

𝐻 = ∑𝑘𝜎𝜀𝑘 
𝐿 𝑎𝑘𝜎

† 𝑎𝑘𝜎 + ∑𝑝𝜎𝜀𝑝   
𝑅 𝑏𝑝𝜎

† 𝑏𝑝𝜎 +   ∑𝑖𝜎𝜀𝑖𝑐𝑖𝜎
† 𝑐𝑖𝜎 +

∑𝑖𝑈𝑖𝑛𝑖↑𝑛𝑖↓ + [∑𝑘𝜎𝑖𝑉𝑘𝑖
𝐿 𝑐𝑖𝜎

† 𝑎𝑘𝜎 + ∑𝑝𝜎𝑖𝑉𝑝𝑖
𝑅𝑐𝑖𝜎

† 𝑏𝑝𝜎 +

Σ𝜎𝑉𝑑  (𝑐1𝜎
† 𝑐2𝜎 +  𝑐2𝜎

† 𝑐3𝜎) + 𝐻. 𝐶. ]            

(3) 

 

In the above expressions, 𝜀𝑘(𝑃)
𝐿(𝑅)

 are thermal kinetic energies 

of non-interacting free electrons contained in left (right) 

lead exhibiting band, 𝑎𝑘𝜎
† (𝑎𝑘𝜎)  and 𝑏𝑝𝜎

† (𝑏𝑝𝜎)  are the 

creation (annihilation) operators for the electrons in left 

(right) leads. The 𝜀𝑖 is the energy of electron in the discrete 

energy level on 𝑖𝑡ℎ  dot, 𝑐𝑖𝜎
† (𝑐𝑖𝜎)  are electron creation 

(annihilation) operators on dots. The factor 𝑈𝑖 is the on-dot 

Coulomb interaction for electrons on 𝑖𝑡ℎ dot, having value 

relative to other parameter such that dots are in Coulomb 

blockade regime. The 𝑛𝑖𝜎 = 𝑐𝑖𝜎
† 𝑐𝑖𝜎  represents the 

occupation number for electron. Further, 𝑉𝑘(𝑝)𝑖
𝐿(𝑅)

 is the 

coupling potential of left (right) tunnel barriers with 𝑖𝑡ℎ dot 

which are essentially the tunneling matrix. Furthermore, 

the parameter 𝑉𝑑is inter-dot tunneling potential. 

 

III. GREEN FUNCTIONS OF QDS 

 

Since, QD systems are nano-scale structures; hence, the 

electron transport through QDs is typically a quantum 

transport and is essentially a many body non-equilibrium 

problem. The common trend to study such a transport has 

been to make use of non-equilibrium Green Function 

(NEGF) approach, as the latter has been the most effective 

theoretical method to investigate electron transport process 

in QD systems [17]. As far as NEGF formalism is 

concerned, three Green functions (GFs) find their 

applications explicitly in quantum transport, namely 

retarded GF (G
r
), advanced GF (G

a
) and lesser than GF 

(G
<
). The fundamentals of these GFs such as definitions 

and properties are found mostly in the literature dealing 

with many body problems in condensed matter physics 

[18,19,20,21]. 

 

The calculations of these three GFs involve equation of 

motion (EOM) method [14]. To make the presentation of 

calculations as brief as possible, the derivations of retarded 

GFs of QDs have been presented because the analytical 

calculations of the other GFs also follow the same 

procedure. In case of a TQD system, the retarded GF 

matrix has the following shape: 

 

 𝐺𝑟 = [

𝐺11
𝑟 𝐺12

𝑟 𝐺13
𝑟

𝐺21
𝑟 𝐺22

𝑟 𝐺23
𝑟

𝐺31
𝑟 𝐺32

𝑟 𝐺33
𝑟

]                            (4) 
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Here, the various matrix elements represent the retarded 

GFs of triple QD system defined as: 𝐺𝑖𝑗
𝑟 = 〈〈𝑐𝑖𝜎, 𝑐𝑗𝜎

† 〉〉𝑟,  

with i, j =1, 2, 3. Now, we need to get the expressions for 

these GFs for series and parallel configurations of QDs 

separately with the help of corresponding Hamiltonian, 

using EOM method. 

(a) Series Configuration 

The EOMs for various GFs (Fourier transformed) of QDs 

in series configuration give following equations:  

𝜔 〈〈𝑐1𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 = 1 + 𝜀1 〈〈𝑐1𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟

+ Vd 〈〈𝑐2𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑘
𝐿 〈〈𝑎𝑘𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟  

                                + 𝑈1 〈〈𝑐1𝜎𝑛1−𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟      (5) 

𝜔 〈〈𝑐2𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 = 1 + 𝜀2 〈〈𝑐2𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟  + 𝑉𝑑
∗ 〈〈𝑐1𝜎 , 𝑐2𝜎

† 〉〉𝜔
𝑟

+ Vd 〈〈𝑐3𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟  

                                + 𝑈2 〈〈𝑐2𝜎𝑛2−𝜎 , 𝑐2𝜎
† 〉〉𝜔        

𝑟   (6) 

𝜔 〈〈𝑐3𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 = 1 + ε3 〈〈𝑐3𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟

+ 𝑉𝑑
∗ 〈〈𝑐2𝜎 , 𝑐3𝜎

† 〉〉𝜔
𝑟 + 𝑉𝑝

𝑅 〈〈𝑏𝑝𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟  

                                + 𝑈3 〈〈𝑐3𝜎𝑛3−𝜎 , 𝑐3𝜎
† 〉〉𝜔 

𝑟    (7) 

𝜔 〈〈𝑐1𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 = 𝜀1 〈〈𝑐1𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟  + Vd 〈〈𝑐2𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟

+ 𝑉𝑘
𝐿 〈〈𝑎𝑘𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟  

                                + 𝑈1 〈〈𝑐1𝜎𝑛1−𝜎 , 𝑐2𝜎
† 〉〉𝜔        

𝑟    (8) 

𝜔 〈〈𝑐3𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 = 𝜀3 〈〈𝑐3𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟  + 𝑉𝑑
∗ 〈〈𝑐2𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟

+ 𝑉𝑝
𝑅 〈〈𝑏𝑝𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟  

                                + 𝑈3 〈〈𝑐3𝜎𝑛3−𝜎 , 𝑐1𝜎
† 〉〉𝜔 

𝑟    (9) 

𝜔 〈〈𝑐1𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 = ε1 〈〈𝑐1𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟  

+ Vd 〈〈𝑐2𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑘
𝐿 〈〈𝑎𝑘𝜎 , 𝑐3𝜎

† 〉〉𝜔
𝑟  

                                + 𝑈1 〈〈𝑐1𝜎𝑛1−𝜎 , 𝑐3𝜎
† 〉〉𝜔 

𝑟    (10) 

𝜔 〈〈𝑐2𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 =

𝜀2 〈〈𝑐2𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟  +

𝑉𝑑
∗ 〈〈𝑐2𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟  + 𝑈2 〈〈𝑐2𝜎𝑛2−𝜎 , 𝑐1𝜎

† 〉〉𝜔 
𝑟        

   (11) 

𝜔 〈〈𝑐2𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 =

𝜀2 〈〈𝑐2𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟  + 𝑉𝑑
∗ 〈〈𝑐2𝜎 , 𝑐3𝜎

† 〉〉𝜔
𝑟 + 𝑈2 〈〈𝑐2𝜎𝑛2−𝜎 , 𝑐3𝜎

† 〉〉𝜔 
𝑟

                (12) 

𝜔 〈〈𝑐3𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 = 𝜀3 〈〈𝑐3𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟  + 𝑉𝑑
∗ 〈〈𝑐2𝜎 , 𝑐2𝜎

† 〉〉𝜔
𝑟

+ 𝑉𝑝
𝑅 〈〈𝑏𝑝𝜎 , 𝑐2𝜎

† 〉〉𝜔
𝑟  

                                + 𝑈3 〈〈𝑐3𝜎𝑛3−𝜎 , 𝑐2𝜎
† 〉〉𝜔        

𝑟    (13) 

The EOMs of new GFs, appearing on the RHS of above 

equations due to lead-dot coupling, result into following 

Dyson equations: 

 〈〈𝑎𝑘𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 = 𝑉𝑘
𝐿𝑔𝑘

𝑟 〈〈𝑐1𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟    (14) 

 〈〈𝑏𝑝𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 = 𝑉𝑝
𝑅𝑔𝑝

𝑟 〈〈𝑐3𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟    (15) 

 

(b) Parallel Configuration 

Similarly, the EOMs of various GFs of QDs in parallel 

configuration give following equations: 

𝜔 〈〈𝑐1𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 = 1 + 𝜀1 〈〈𝑐1𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟  

+ Vd 〈〈𝑐2𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑘1
𝐿 〈〈𝑎𝑘𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟  

                     +𝑉𝑝
𝑅 〈〈𝑏𝑝𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟 +  𝑈1 〈〈𝑐1𝜎𝑛1−𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟

           (16) 

𝜔 〈〈𝑐1𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 = 𝜀1 〈〈𝑐1𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟

+ Vd 〈〈𝑐2𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑘1
𝐿 〈〈𝑎𝑘𝜎 , 𝑐2𝜎

† 〉〉𝜔
𝑟  

   +𝑉𝑝1
𝑅 〈〈𝑏𝑝𝜎 , 𝑐2𝜎

† 〉〉𝜔
𝑟 + 𝑈1 〈〈𝑐1𝜎𝑛1−𝜎 , 𝑐2𝜎

† 〉〉𝜔
𝑟   (17) 

𝜔 〈〈𝑐1𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 = 𝜀1 〈〈𝑐1𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟  

+ Vd 〈〈𝑐2𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑘1
𝐿 〈〈𝑎𝑘𝜎 , 𝑐3𝜎

† 〉〉𝜔
𝑟  

+𝑉𝑝1
𝑅 〈〈𝑏𝑝𝜎 , 𝑐3𝜎

† 〉〉𝜔
𝑟 + 𝑈1 〈〈𝑐1𝜎𝑛1−𝜎 , 𝑐3𝜎

† 〉〉𝜔
𝑟   (18) 

𝜔 〈〈𝑐3𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 = 𝜀3 〈〈𝑐3𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟  

+ 𝑉𝑑
∗ 〈〈𝑐2𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟 +𝑉𝑘3

𝐿 〈〈𝑎𝑘𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟  

 +𝑉𝑝3
𝑅 〈〈𝑏𝑝𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟 +  𝑈3 〈〈𝑐3𝜎𝑛3−𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟   (19) 

𝜔 〈〈𝑐3𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 = 𝜀3 〈〈𝑐3𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟  

+ 𝑉𝑑
∗ 〈〈𝑐2𝜎 , 𝑐2𝜎

† 〉〉𝜔
𝑟 +𝑉𝑘3

𝐿 〈〈𝑎𝑘𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟  

 +𝑉𝑝3
𝑅 〈〈𝑏𝑝𝜎 , 𝑐2𝜎

† 〉〉𝜔
𝑟 +  𝑈3 〈〈𝑐3𝜎𝑛3−𝜎 , 𝑐2𝜎

† 〉〉𝜔
𝑟   (20) 

𝜔 〈〈𝑐2𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 =

1 + 𝜀2 〈〈𝑐2𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟  +

𝑉𝑑
∗ 〈〈𝑐1𝜎 , 𝑐2𝜎

† 〉〉𝜔
𝑟 + Vd 〈〈𝑐3𝜎 , 𝑐2𝜎

† 〉〉𝜔
𝑟 +

𝑉𝑘2
𝐿 〈〈𝑎𝑘𝜎 , 𝑐2𝜎

† 〉〉𝜔
𝑟 +𝑉𝑝2

𝑅 〈〈𝑏𝑝𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 +

 𝑈2 〈〈𝑐2𝜎𝑛2−𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟       (21) 

𝜔 〈〈𝑐3𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 = 1 + 𝜀3 〈〈𝑐3𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟  

+ 𝑉𝑑
∗ 〈〈𝑐2𝜎 , 𝑐3𝜎

† 〉〉𝜔
𝑟 + 𝑉𝑘3

𝐿 〈〈𝑎𝑘𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟  

 +𝑉𝑝3
𝑅 〈〈𝑏𝑝𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟 +  𝑈3 〈〈𝑐3𝜎𝑛3−𝜎 , 𝑐3𝜎

† 〉〉𝜔
𝑟   (22) 

𝜔 〈〈𝑐2𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 = 𝜀2 〈〈𝑐2𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟  + 𝑉𝑑
∗ 〈〈𝑐1𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟 +

Vd 〈〈𝑐3𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑘2
𝐿 〈〈𝑎𝑘𝜎 , 𝑐1𝜎

† 〉〉𝜔
𝑟 +𝑉𝑝2

𝑅 〈〈𝑏𝑝𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 +

 𝑈2 〈〈𝑐2𝜎𝑛2−𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟           (23) 

𝜔 〈〈𝑐2𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 = 𝜀2 〈〈𝑐2𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟  + 𝑉𝑑
∗ 〈〈𝑐1𝜎 , 𝑐3𝜎

† 〉〉𝜔
𝑟 +

Vd 〈〈𝑐3𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑘2
𝐿 〈〈𝑎𝑘𝜎 , 𝑐3𝜎

† 〉〉𝜔
𝑟 +𝑉𝑝2

𝑅 〈〈𝑏𝑝𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 +

 𝑈2 〈〈𝑐2𝜎𝑛2−𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟        (24) 

 

The EOMs of new GFs, appearing on the RHS of above 

equations due to lead-dot coupling, result into following 

Dyson equations: 

〈〈𝑎𝑘𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 =

𝑉𝑘1
𝐿∗𝑔𝑘

𝑟 〈〈𝑐1𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑘2
𝐿∗𝑔𝑘

𝑟 〈〈𝑐2𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 +

                              𝑉𝑘3
𝐿∗𝑔𝑘

𝑟 〈〈𝑐3𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟     (25) 

〈〈𝑏𝑝𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 =

𝑉𝑝1
𝑅∗𝑔𝑝

𝑟 〈〈𝑐1𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑝2
𝑅∗𝑔𝑝

𝑟 〈〈𝑐2𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟 +

                              𝑉𝑝3
𝑅∗𝑔𝑝

𝑟 〈〈𝑐3𝜎 , 𝑐1𝜎
† 〉〉𝜔

𝑟     (26) 

〈〈𝑎𝑘𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 =

𝑉𝑘1
𝐿∗𝑔𝑘

𝑟 〈〈𝑐1𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑘2
𝐿∗𝑔𝑘

𝑟 〈〈𝑐2𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 +

                              𝑉𝑘3
𝐿∗𝑔𝑘

𝑟 〈〈𝑐3𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟     (27) 

〈〈𝑏𝑝𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 =

𝑉𝑝1
𝑅∗𝑔𝑝

𝑟 〈〈𝑐1𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑝2
𝑅∗𝑔𝑝

𝑟 〈〈𝑐2𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟 +

                              𝑉𝑝3
𝑅∗𝑔𝑝

𝑟 〈〈𝑐3𝜎 , 𝑐2𝜎
† 〉〉𝜔

𝑟    (28) 

〈〈𝑎𝑘𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 =

𝑉𝑘1
𝐿∗𝑔𝑘

𝑟 〈〈𝑐1𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑘2
𝐿∗𝑔𝑘

𝑟 〈〈𝑐2𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 +

                              𝑉𝑘3
𝐿∗𝑔𝑘

𝑟 〈〈𝑐3𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟     (29) 

〈〈𝑏𝑝𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 =

𝑉𝑝1
𝑅∗𝑔𝑝

𝑟 〈〈𝑐1𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 + 𝑉𝑝2
𝑅∗𝑔𝑝

𝑟 〈〈𝑐2𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟 +

                              𝑉𝑝3
𝑅∗𝑔𝑝

𝑟 〈〈𝑐3𝜎 , 𝑐3𝜎
† 〉〉𝜔

𝑟    (30) 

In GFs of the type 𝑈𝑖 〈〈𝑐𝑖𝜎𝑛𝑖−𝜎 , 𝑐𝑖𝜎
† 〉〉𝜔

𝑟  appearing in some 

of the above equations originate due to the intra-dot 

Coulomb interaction term. The EOMs for such types of 

GFs generate endless chains of higher order GFs, which 

make closure of GFs impossible unless a suitable 
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decoupling technique is employed to close the hierarchy 

[14]. Here, we make use of mean field approximations 

technique to decouple the higher order GFs [22]. It is 

important to admit that this decoupling process 

approximates the effect of Coulomb interaction. When we 

apply mean field decoupling approximation, GFs of the 

type 𝑈𝑖 〈〈𝑐𝑖𝜎𝑛𝑖−𝜎 , 𝑐𝑖𝜎
† 〉〉𝜔

𝑟   reduce to the following shapes: 

𝑈𝑖 〈〈𝑐𝑖𝜎𝑛𝑖−𝜎 , 𝑐𝑖𝜎
† 〉〉𝜔

𝑟 ≈  𝑈𝑖𝑛𝑖−𝜎 〈〈𝑐𝑖𝜎 , 𝑐𝑖𝜎
† 〉〉𝜔

𝑟       (31) 

 

After the use of above approximations and solving all the 

EOMs simultaneously, all of the retarded GFs of QDs are 

clearly closed and we can get their final shapes. The final 

forms of retarded GFs for the dots are given in the matrix 

form as: 

 

a)  GFs of QDs in Series Configuration: 

 

 𝐺𝑟 = [

𝐺11
𝑟 𝐺12

𝑟 𝐺13
𝑟

𝐺21
𝑟 𝐺22

𝑟 𝐺23
𝑟

𝐺31
𝑟 𝐺32

𝑟 𝐺33
𝑟

] 

      = [

𝑥1 −𝑉𝑑12 0

−𝑉𝑑12
∗ 𝑥2 −𝑉𝑑23

0 −𝑉23
∗ 𝑥3

]

−1

   (32) 

Here, 

𝑥1 = 𝜔 − 𝜖1 − 𝑈𝑛1−𝜎 +
𝑖

2
Γ11

𝐿  

𝑥2 = 𝜔 − 𝜖2 − 𝑈𝑛2−𝜎  

𝑥3 = 𝜔 − 𝜖3 − 𝑈𝑛3−𝜎 +
𝑖

2
Γ33

𝑅  

 

b) GFs of QDs in Parallel Configuration: 

 

           𝐺𝑟 = [

𝐺11
𝑟 𝐺12

𝑟 𝐺13
𝑟

𝐺21
𝑟 𝐺22

𝑟 𝐺23
𝑟

𝐺31
𝑟 𝐺32

𝑟 𝐺33
𝑟

] 

                =

[
 
 
 𝑦1 𝑍12

𝑖

2
Γ13

𝑍12
∗ 𝑦2 𝑍23

𝑖

2
Γ31 𝑍23

∗ 𝑦3 ]
 
 
 
−1

   (33) 

Here, 

𝑦1 = 𝜔 − 𝜖1 − 𝑈𝑛1−𝜎 +
𝑖

2
Γ11 

𝑦2 = 𝜔 − 𝜖2 − 𝑈𝑛2−𝜎 +
𝑖

2
Γ22 

𝑦3 = 𝜔 − 𝜖3 − 𝑈𝑛3−𝜎 +
𝑖

2
Γ33 

𝑍12 = −𝑉𝑑12 +
𝑖

2
Γ12 

𝑍12
∗ = −𝑉𝑑12

∗ +
𝑖

2
Γ21 

𝑍23 = −𝑉𝑑23 +
𝑖

2
Γ23 

𝑍23
∗ = −𝑉𝑑23

∗ +
𝑖

2
Γ32 

In all the above cases, 𝛤𝑖𝑗 = 𝛤𝑖𝑗
𝐿 + 𝛤𝑖𝑗  

𝑅  and  

𝛤𝑖𝑗
𝐿(𝑅)

= ∑ 𝑉𝑘(𝑝)𝑖(𝑗)
𝐿(𝑅)∗ 𝑉𝑘(𝑝)𝑖(𝑗)

𝐿(𝑅)
𝑔𝑘(𝑝)

𝑟

𝐿(𝑅)

𝑘(𝑝)

 

           = 2𝜋 ∑ 𝑉𝑘(𝑝)
𝐿(𝑅)∗𝑉𝑘(𝑝)

𝐿(𝑅)𝐿(𝑅)
𝑘(𝑝) 𝛿(𝜔 − 𝜀𝑘(𝑝)

𝐿(𝑅)
), are the various 

lead-dot tunnel coupling matrix elements (i, j = 1, 2, 3). In 

case of the wide-band limit of leads, only the imaginary 

parts of these couplings are significant. These lead-dot 

coupling parameters can be represented in the shape of 

matrices for the series and parallel TQD systems, as 

follows: 

 

(a) For series TQD 

 Γ𝐿 = [
Γ11

𝐿 0 0
0 0 0
0 0 0

] and  Γ𝑅 = [
0 0 0
0 0 0
0 0 Γ33

𝑅
] 

 

(b) For parallel TQD 

Γ𝐿(𝑅) = [

Γ11
𝐿(𝑅)

Γ12
𝐿(𝑅)

Γ13
𝐿(𝑅)

Γ21
𝐿(𝑅)

Γ22
𝐿(𝑅)

Γ23
𝐿(𝑅)

Γ31
𝐿(𝑅)

Γ32
𝐿(𝑅)

Γ33
𝐿(𝑅)

] 

IV. TRANSMISSION COEFFICIENT FOR A TQD 

SYSTEM 

 

The transmission coefficient of a QD system is contained 

in the expression of current given by Landauer-Buttiker 

formula. To obtain the expression for current using NEGF 

approach, we follow Meir and Wingreen technique, which 

results into the following Landauer-Buttiker formula 

[21,23, 24, 25]: 

𝐼 =
𝑒

ℎ
∑∫(𝑓𝐿 − 𝑓𝑅)𝑇𝑟(𝐺𝑎𝛤𝑅𝐺𝑟𝛤𝐿)𝑑𝜔

𝜎

 

                    = 
𝑒

ℎ
∑ ∫(𝑓𝐿 − 𝑓𝑅)𝑇(𝜔)𝑑𝜔𝜎    (34) 

 

In the above equation, 𝑇(𝜔) is the transmission probability 

or transmission coefficient and 𝑓𝐿(𝑅)  is Fermi Dirac 

distribution function for the electrons in left (right) lead. 

The transmission coefficient in above equation contains 

GFs of QDs and is given as: 

  𝑇(𝜔) = 𝑇𝑟(𝐺𝑎𝛤𝑅𝐺𝑟𝛤𝐿)             (35) 

 

Therefore, the final expressions for electronic current and 

transmission coefficient of the given linear TQD 

topologies, we can select the corresponding Green function 

matrices and substitute them in the above equations. 

Although the shapes of the equations for electronic current 

and the transmission probability for the different QD 

systems is the same, yet the form of GFs and the 𝛤 

matrices are different for different QD system. So, the final 

form of transmission coefficient for numerical calculations, 

after the substitution of various GFs and other matrices, 

gives us a new result.  

 

V. NUMERICAL RESULTS 

 

In this particular section, the numerical calculations of 

transmission coefficient for the TQD system, in series and 

parallel geometry, have been presented. For the sake of 

simplicity, we may assume that dots have been 

symmetrically coupled to each other and with the leads. 



Int. J. Sci. Res. in Physics and Applied Sciences                                                                                 Vol.9, Issue.3, Jun 2021 

  © 2021, IJSRPAS All Rights Reserved                                                                                                                              19 

Experimental observations on such a QD system have 

shown that the on-dot Coulombic repulsion energy U 

(U1=U2=U3) is the dominating parameter; therefore, rest of 

the energies have been expressed in terms of units of U. 

Also, we assume that three dots are identical in all respect 

and have same Fermi energy levels with energy i.e. 

𝜀1 = 𝜀2 = 𝜀3 = 𝜀   and the same inter-dot coupling Vd. 

Further, our consideration of a non-magnetic case leads to 

the averaging of dot level occupation number i.e. 𝑛𝑖𝜎 =

𝑛𝑖−𝜎 = 𝑛 =
1

2
. 

 

In the numerical calculations, we tune the value of inter-

dot coupling over a wide range. Experimentally, it 

becomes possible to vary the different tunnel coupling 

strengths with the help of the external controls which are 

the part of fabrication of QD systems. The results 

presented show the role of inter-dot coupling in deciding 

the nature of transmission probability spectrum for the 

TQD system in its series as well as parallel configurations 

between the two leads. We have tuned the inter-dot tunnel 

coupling from week coupling regime (𝑉𝑑 ≪ 𝛤) to strong 

coupling regime (𝑉𝑑 ≥ 𝛤). 

 

 
Figure 2. The plot showing transmission coefficient as a function 

of energy in series configuration of a TQD system with ε = 

0.04U, Γ = 0.08U, for various values of inter-dot tunneling rate. 

 

The above graph (Fig. 2) shows the transmission 

coefficient for series configuration of a TQD. Clearly, a 

single transmission peak appears around energy ε+0.5U, 

due to single resonant level on three identical QDs. 

Further, we can clearly see the growth in transmission 

peaks with increase in the tunneling rate parameter or 

inter-dot coupling Vd increases in weak coupling regime. 

While at large value of tunneling rate, secondary peaks 

appear symmetrically about the main transmission peak. 

This occurs precisely when Vd becomes more than the 

lead-dot coupling strength Γ i.e. in strong dot-dot coupling 

regime. The development of secondary peak structure is 

the clear signs of merging of three QDs to form a single 

large QD, resulting into renormalization of energy levels 

around the original resonant level. The occurrence of 

merger of QDs to form a single bigger dot has previously 

been observed in case of double QD system also [16], [25]. 

But, here we have observed the same phenomena for a 

triple QD system in series and is a new finding for a TQD 

system. It is important to mention here that the shapes of 

new renormalized transmission peaks may differ in 

experimental findings because it is difficult to fabricate the 

identical QDs, whereas, we have assumed QDs to be 

identical. 

 
Figure 3. The plot showing transmission coefficient versus energy 

for parallel configuration of a TQD system with ε = 0.04U, Γ = 

0.08U, for various values of inter-dot tunneling rate. 

 

Now, let us see the role of inter-dot tunneling here for the 

case of parallel configuration of TQD system. It is found 

that Vd. has entirely different effect here. Fig. 3 shows the 

transmission probability (un-normalized) graphs for 

parallel configuration of TQD system for different values 

of Vd. As compared to the series configuration, the 

transmission probability is quite large in this case due to 

number of available transmission channels in parallel 

geometry, whereas, there was only a single transmission 

channel in series case. When Vd.=0, there is a single 

Lorenzian transmission peak at ω = 𝜀 + 𝑈𝑛. As the inter-

dot tunneling is introduced (Vd.≠0), two types of peak 

structures appear in transmission spectrum. One of these is 

a Lorenzian peak appearing around the energy ω = 𝜀 + 𝑈𝑛, 

whereas, another one is a Fano line shaped. The 

development of Fano resonant peak structure confirms the 

occurrence of Fano effect in parallel TQD system resulting 

due to the quantum mechanical interference among the 

discrete energies of dots and the continuum of energies of 

electrons in the leads.  

 

The phenomena of Fano effect in QDs, was noticed in 

double QD system for an asymmetric parallel 

configuration only [17].  But, Fano peaks always disappear 

when QDs are arranged in symmetric parallel topology, in 

the absence of any magnetic flux [25]. However, an 

important finding of the present theoretical work is the 

occurrence of Fano effect in symmetric parallel topology 

for a TQD system, even with no flux threading the system. 

Furthermore, it is significant to mention here that Fano 

peak disappears when the inter-dot tunneling is turned off 

and we observe only the Lorenzian peak in transmission 

spectrum. Therefore, it can be concluded that the inter-dot 
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tunneling is responsible for occurrence of Fano effect in a 

symmetric parallel TQD system. 

 

VI. CONCLUSIONS 

 

In the present work a quantum transport through a linear 

array of triple quantum dots was investigated in Coulomb 

blockade regime of transport, using NEGF formalism. The 

effect of inter-dot tunneling on transmission peak was 

explored numerically. The following conclusions are 

drawn from the numerical results presented in the given 

work: 

1. The transmission probability is quite small in series 

configuration of TQD, as compare to that in parallel 

configuration. 

2. In series TQD system, inter-dot tunneling leads to 

merger of three QDs to a single big QD in the strong 

lead dot coupling regime. 

3. In parallel TQD system, inter-dot tunneling induces 

Fano effect even with no magnetic flux. 

4. The above observations are important findings of the 

present work and these observations should be taken 

into consideration wherever any technological 

application involves any TQD systems.  
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