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Abstract— The gravitational field of a spherically symmetric mass in a universe with cosmological constant (ʌ) is 

described in terms of Schwarzschild de-Sitter (SdS) space-time. Based on this space-time we investigated the geodesics of 

a test particle- photon. We performed our study on the space-time in between the cosmological event horizon and black 

hole event horizon i.e. rH < r < rC and also imposed E
2
 > Veff for the physical acceptance. We detected two types of orbits, 

namely periodic bound orbit and terminating bound orbit. The mathematical conditions for the existence of these orbits 

have been discussed. We found that there will no longer be any periodic bound orbits for a large positive cosmological 

constant. The analysis of effective potential inferred us that only the peak of the curve changes for change in angular 

momentum (L). These peaks correspond to circular orbits in null geodesics and a circular orbit of radius 3M becomes an 

allowed null geodesic. 
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I.  INTRODUCTION  

 

Squeezing of matter into a tiny space engenders strong 

gravity, thereby precluding the possibility of escaping of 

particles or radiations from what is called a black hole. It is 

considered that three types of black holes exist in the 

universe: (a) Black holes of stellar masses, which were 

developed after the death of massive stars, (b) 

Supermassive black holes having masses up to 10
9
 Mʘ, 

where Mʘ = 2×10
33

 gm is the Solar mass, and more at 

centers of galaxies, and (c) Primordial black holes whose 

presence are attributed to the large-scale inhomogeneities 

at the nascent expansion of the universe [1]. The black 

holes’ concept burgeoned with Albert Einstein's Theory of 

General Relativity proposed in 1915. The German 

physicist Karl Schwarzschild substantiated that black holes 

are a solution to Einstein's equation in spherical symmetry. 

It was an exact solution for a stationary black hole which 

could define the gravitational radius, rs = 2M (called 

Schwarzschild radius), the radius below which the 

gravitation attraction must cause a particle to undergo 

irreversible gravitational collapse. 

 

Energy and momentum carried by gravitational fields 

contribute to their own source which implies that 

gravitational/Einstein field equations are nonlinear partial 

differential equations [2]. The Einstein field equation 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 =  −8𝜋𝐺𝑇𝜇𝜈  explains all gravitational 

effects in Solar system explicitly. The Supernova 

Cosmology Project [3], however, rejuvenated the 

cosmological constant in theoretical descriptions. The 

observations, for instance, the fluctuations in the cosmic 

microwave background, structure formation etc are 

invariably accentuated by an additional energy–momentum 

term appearing in the Einstein field equation with 

cosmological constant, 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 −  ʌ𝑔𝜇𝜈 =

 −8𝜋𝐺𝑇𝜇𝜈 , as an additional cosmological term. The 

incorporation of ʌ in the field equation is indispensable to 

explain the observation of an accelerated expanding 

universe as well [4]. In such universe we discuss the 

gravitational field of a spherically symmetric mass which 

is provided by Schwarzschild de-Sitter (SdS) metric. We 

scrutinize the effective potential for photons’ motion and 

the nature of orbits within null geodesics. In addition, we 

explore the influences of cosmological constant on the 

nature of orbits. 

 

The remainder of the paper follows the following structure: 

in sections II and III the mathematical descriptions of SdS 

space-time and the analytical solutions of polynomial 

equation are described, respectively. The effective 

potential of the test particle is provided in section IV. 

Subsequently, in section V we emphasize the locations of 

event horizons. Next, in sections VI and VII we describe 

the photons’ orbits in the background of the SdS black hole 

and the influences of cosmological constant on those 

orbits, respectively. Finally, in section VIII the findings of 

the study are concluded. 

 

II. SCHWARZSCHILD DE-SITTER METRIC 

 

The line element for the SdS space-time [5] is given by 

𝑑𝑠2 = −𝐵𝑑𝑡2 + 𝐵−1𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃 𝑑𝜙2,     (1) 
where B(r) is known as the lapse function: 

http://www.isroset.org/
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𝐵(𝑟) = (1 −
2𝑀

𝑟
−

ʌ𝑟2

3
),                                                   (2) 

 

and M represents the mass of the black hole. The 

coordinates are circumscribed within: 

𝑡 є (−∞, ∞), 𝑟 є (0, ∞), 𝜃 є [0, 𝜋],  and 𝜙 є [0, 2𝜋]. 
 

The geodesics equations for a space-time are obtained from 

the Lagrangian 

ℒ =
1

2
𝑔𝑖𝑗

𝑑𝑥𝑖

𝑑𝜏

𝑑𝑥𝑗

𝑑𝜏
. 

For the SdS space-time the Lagrangian is calculated as 

ℒ =
1

2
[𝐵(𝑟)�̇�2 − 𝐵−1(𝑟)�̇�2 − 𝑟2�̇�2 − 𝑟2 sin2 𝜃 �̇�2],     (3) 

 

where the derivatives are calculated with respect to 𝜏. The 

canonical momenta are then calculated as 

𝑝𝑡 =
𝜕ℒ

𝜕�̇�
= 𝐵(𝑟)�̇� = 𝐸, 

𝑝𝑟 = −
𝜕ℒ

𝜕�̇�
= 𝐵−1(𝑟)𝑟,̇  

𝑝𝜙 = −
𝜕ℒ

𝜕�̇�
= 𝑟2 sin2 𝜃 𝜙,̇  

and 

𝑝𝜃 =  −
𝜕ℒ

𝜕�̇�
= 𝑟2�̇�. 

The resulting Hamiltonian is 

𝐻 = 𝑝𝑡 �̇� − (𝑝𝑟�̇� + 𝑝𝜃�̇� + 𝑝𝜙�̇�) − ℒ = ℒ.                       (4) 

 

Since the Hamiltonian and the Lagrangian are equal, the 

potential energy is absent in the problem. The energy is 

solely the kinetic energy as is indeed manifested by the 

expression for the Lagrangian. 

 

The geodesic is expressed in the equatorial plane which is 

recognized by 𝜃 =
𝜋

2
. Thus, 

𝑝𝜙 = 𝑟2 𝑑𝜙

𝑑𝜏
= 𝐿 = constant,                                             (5) 

 

where L is the angular momentum in an axis normal to the 

equatorial plane. Thus, the Lagrangian becomes 

2ℒ = 𝐵−1(𝑟)𝐸2 − 𝐵−1(𝑟)�̇�2 −
𝐿2

𝑟2
. 

Using 2ℒ = 0 for null geodesics [5], we get 

�̇�2 +
𝐿2

𝑟2
(1 −

2𝑀

𝑟
−

ʌ𝑟2

3
) = 𝐸2.                                        (6) 

 

Subsequently, the equations representing the nature of 

photon in the background of the Schwarzschild de-Sitter 

black hole are obtained 

 

�̇�

𝑟 ̇
=

𝐸

(1 −
2𝑀

𝑟
−

ʌ𝑟2

3
)

√𝐸2 −
𝐿2

𝑟2 (1 −
2𝑀

𝑟
−

ʌ𝑟2

3
)

                                    (7) 

and 

�̇�

�̇�
=

𝐿
𝑟2

√𝐸2 −
𝐿2

𝑟2 (1 −
2𝑀

𝑟
−

ʌ𝑟2

3
)

                                     (8) 

 

III. ANALYTICAL SOLUTION 

 

For simplicity replacing the affine parameter 𝜏 by 𝑠 , 

equation (6) becomes 

(
𝑑𝑟

𝑑𝑠
)

2

= 𝐸2 −
𝐿2

𝑟2
(1 −

2𝑀

𝑟
−

ʌ𝑟2

3
). 

By introducing the new variables: 𝑢 =
𝑟𝑠

𝑟
, 𝜆 = (

𝑟𝑠

𝐿
)

2

≥ 0, 

𝜇 = 𝐸2 ≥ 0, and 𝜌 =
ʌ

3
𝑟𝑠

2, it can be obtained for the null 

geodesics: 

(
𝑑𝑢

𝑑𝜙
)

2

= 𝜆𝜇 + 𝜌 − 𝑢2 + 𝑢3 = 𝑃3(𝑢),                           (9) 

 

where P3(u) is the polynomial of 3
rd

 order. The solutions of 

the last equation is obtained in terms of the Weierstrass Q 

function [4] as 

𝑟(𝜙) =
𝑟𝑠

4𝑄(𝜙; 𝑔2, 𝑔3) +
1
3

,                                              (10) 

 

with the Weierstrass invariants: 

 

𝑔2 =
1

12
 

and 

𝑔3 = −
1

8
[

1

27
+

1

2
(𝑢ᴏ

3 − 𝑢ᴏ
2)], 

 

where 𝑢ᴏ =
𝑟𝑠

𝑏
 and b represents the distance of closest 

approach [4]. 

 

The numbers of positive real zeros of polynomial (P5 in 

time-like, P3 in null geodesics) characterize the form of the 

resulting orbits. If the positive real zeros are represented by 

m1, ..., mn, then the regions which we can accept physically 

are given by [0, m1], [m2, m3], ..., [mn, ∞] for even n and by 

[m1, m2], ..., [mn, ∞] for odd n. We can categorize 

following classes of orbits according to distance r: (i) the 

region [0, m1] corresponds to escape orbits, (ii) the region 

[mn, ∞] corresponds to terminating orbits on which the test 

particles terminate into the singularity, and (iii) the regions 

[mi, mi+1] correspond to bound orbits. A particle coming 

from ∞ falls into the singularity for the devoid of positive 

real zero [4]. 

 

IV. EFFECTIVE POTENTIAL 

 

We can interpret the second term on the left hand side of 

radial equation (6) as the potential energy in the sense that, 

together with �̇�2 interpreted as kinetic energy, it is a 

constant of motion. This potential energy term is called the 

effective potential that takes the form 

𝑉𝑒𝑓𝑓 =
𝐿2

𝑟2
(1 −

2𝑀

𝑟
−

ʌ𝑟2

3
).                                             (11) 
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The response of effective potential (Veff) with respect to 

the different values of angular momentum (L) is presented 

in Figure (1). The figure exhibits that the peaks of the 

curves change for change in L. The nature of the curves 

remains similar for all values of L if the distance (r) 

increases. It is worth noting that the radial motion (L=0) of 

photon is independent of the cosmological constant [5]. 

The peak on the curve corresponds to a circular orbit in 

null geodesics. The circular geodesic is obtained by 

differentiating the effective potential and equating with 

zero. Differentiating the Veff, 

𝑉𝑒𝑓𝑓
′ (𝑟) =

𝑑𝑉𝑒𝑓𝑓

𝑑𝑟
=

𝐿2

𝑟2
(

2𝑀

𝑟2
−

2ʌ𝑟

3
)

−
2𝐿2

𝑟3
(1 −

2𝑀

𝑟
−

ʌ𝑟2

3
) = 0. 

On simplification, we get 

𝑉𝑒𝑓𝑓
′ (𝑟) = −

2𝐿2

𝑟3
+

6𝑀𝐿2

𝑟4
= 0, 

which immediately yields r = 3M. Therefore, a circular 

orbit of radius r = 3M is an allowed null geodesic even in 

the Schwarzschild de-Sitter space-time. 

 
Figure 1: Variation of Veff with angular momentum (L) for ʌ = 10−6. 

 

V. EVENT HORIZONS 

 

The positive cosmological constant repels geodesics. The 

known exact stationary solutions with ʌ >0 usually exhibit 

an external boundary–the cosmological event horizon. The 

observed small value of ʌ  sets the length scale of the 

horizon to be very large in the order of 
1

√ʌ
. It can be 

speculated that the black hole is situated inside the 

cosmological horizon and the cosmological event horizon 

behaves in such a space-time as an outer causal boundary. 

Outside the cosmological horizon the time-like Killing 

vector field changes to space-like and communication is 

occluded along a future directed causal path, which makes 

the use of asymptotics for an observer located inside the 

cosmological horizon trivial [6]. 

Mathematically, the metric coefficient of dt
2
 can be 

equated to zero i.e. 

(1 −
2𝑀

𝑟
−

ʌ𝑟2

3
) = 0 

On solving, 

(𝑟3 −
3𝑟

 ʌ
−

6𝑀

 ʌ
) = 0                                                           (12) 

The solutions of equation (12) are [6]: 

𝑟𝐻 = 2𝑀 (1 +
4

3
 ʌ𝑀2 … ), 

𝑟𝐶 = √
3

ʌ
(1 − 𝑀√

 ʌ 

3
… ), 

and 

𝑟𝑂 = −(𝑟𝐻 + 𝑟𝐶). 
 

Here, rH and rC respectively represent the black hole event 

horizon and the cosmological horizon. It is worth noting 

that we restrict ourselves on the space-time in between 

these two horizons i.e. rH ≤ r ≤ rC. In fact, we are interested 

in the regions of gtt < 0, as shown in Figure (2), where both 

the effects of mass parameter and cosmological constant 

should be considered. 

 

 
Figure 2: Variation of gtt(r) with r 

 

The parameter r is real and positive, and hence, the 

physically acceptable regions are given by those r for 

which E
2
 > Veff. At the intersection points E

2
 = Veff, we 

have 
𝑑𝑟

 𝑑𝜙
= 0. These are called the turning points of the 

motion. Mathematically, 

𝜙 − 𝜙ᴏ = ∫
𝐿

 𝑟2

𝑟

𝑟ᴏ

𝑑𝑟

 √𝐸2 − 𝑉𝑒𝑓𝑓

                                      (13) 

 

By imposing these two constraints, we work for the 

trajectories of photons in the background of SdS black 

hole. 

 

VI. PHOTONS’ ORBITS 

 

(a) Bound Terminating Orbits 

An orbit having finite maximum radius and minimum 

radius equal to zero is called a bound terminating orbit. We 

found two conditions for the existence of such an orbit 

which are enumerated below: 

(i)If we choose ʌ𝑟𝑠
2 >

1

 9
, then for any choice of 𝜆 >

1

 3
 there 

will be no bound orbits where  𝜆 = (
𝑟𝑠

𝐿
)

2

 [4]. In this 

mathematical constraint, we observed terminating bound 

orbits presented in Figure (3). To satisfy the above relation, 

we fixed ʌ  = 0.030, E = 0.95, and varied the angular 

momentum (L) only. 
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(a) 

 
(b) 

Figure 3: Plots exhibiting bound terminating orbits: (a)L = 4M (b)L = 

10M 

 

(ii)If a test particle starts to move from a point located 

inside the cosmological event horizon i.e. r2 < rC, then 

under such condition the test particle exhibits a terminating 

bound orbit [7]. This is due to the fact that the metric 

coefficient gtt
’
(r) is less than zero in that region. Such type 

of situation has been also described by Dymnikova, 

Poszwa, and Soltysek [7]. We fixed E = 0.95, L = 3.7M, 

and varied the r2 only. The plots exhibiting this constraint 

are shown in Figure (4). 

 

 
(a) 

 
(b) 

Figure 4: Bound terminating orbits for a photon inside the cosmological 

event horizon: (a) r2 = rC - 300 (b) r2 = rC – 1000. 

 

(b) Periodic Bound Orbits 

If a test particle-photon is allowed to start its motion from 

the space-time outside the cosmological event horizon, 

then the photon becomes bound around the black hole 

event horizon. The value of gtt
’
(r) becomes positive in this 

region. In this situation, photon exhibits the orbits similar 

to the planetary orbits. We fixed E = 0.95, L = 3.7M, and 

varied the r2 on the space-time outside the rC i.e. r2 > rC.  

We presented such orbits in Figure (5). 

 
(a) 

 
(b) 

Figure 5: Periodic bound orbits for a photon outside the cosmological event 

horizon: (a) r2 = rC + 300 (b) r2 = rC + 1000. 
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VII. INFLUENCES OF Ʌ ON THE ORBITS 

 

The Figure (6) exhibits the effects of cosmological 

constant (ʌ) on the shapes of orbit. Here, we fixed the 

enregy parameter, E = 0.95, and the angular momentum 

parameter, L = 3.7M, to investigate the influences merely 

of cosmological constant. Observational data indicate that 

the cosmological constant ʌ  has a value of ʌᴏ ∼
10−52 𝑚−2  [8, 9]. So, it is reasonable to start from that 

value. We observed the densed bound orbits of test particle 

around the black hole event horizon. Here, the bound orbits 

represent the interval bound orbits. The interval bound 

orbits have a minimal and a maximal finite radius and 

orbits in between two radii. For ʌ = 10−5 𝑚−2, the photon 

came inside from the cosmological event horizon and 

became bound around the black hole event horizon (not 

shown here in the plots). In the case of ʌ = 10−2 𝑚−2, the 

photon moved inside from the cosmological event horizon 

same as in the previous case but the geodesic terminated at 

r ≠ 0 after completing just a few loops (not shown here in 

the plots). However, on further increasing the ʌ i.e. at 

ʌ = 1 𝑚−2 , we observed the dramatic variation in the 

shape of orbit. The photon came inside not from the 

infinity but from some finite radius. The geodesic vanished 

at the singularity point (r = 0) without completing a single 

loop. Such an orbit characterizes the terminating bound 

orbit. Hence, the bound orbit at ʌᴏ ∼ 10−52 𝑚−2 converted 

into the terminating bound orbit at ʌ = 1 𝑚−2. Thus, for a 

large positive cosmological constant, the bound orbits do 

not exist [10, 11]. This is in consistent with the results of 

Hackmann and Lӓmmerzahl [4] as well. 

 

 
(a) 

 
(b) 

Figure 6: Variation in the shapes of the orbit with respect to increasing 

cosmological constant (ʌ): (a) ʌ = 10−52 𝑚−2
 (b) ʌ = 1 𝑚−2. 

 

VIII. CONCLUSIONS 

 

The observation of an accelerated expanding universe is 

described by the Einstein's field equation with 

cosmological constant. The spherically symmetric 

Schwarzschild de-Sitter solution is considered as a 

perspicuous solution of an isolated mass. In this paper, we 

investigated the null geodesics in Schwarzschild de-Sitter 

space-time. Our key findings are organized in the 

following paragraph. 

 

We detected two types of orbits, namely periodic bound 

orbit and terminating bound orbit. The mathematical 

conditions for the existence of these orbits have been 

discussed. We found that there will no longer be any 

periodic bound orbits for a large positive cosmological 

constant. The analysis of effective potential inferred us that 

only the peak of the curve changes for change in angular 

momentum (L). These peaks correspond to circular orbits 

in null geodesics and a circular orbit of radius 3M becomes 

an allowed null geodesic. The results of our study are 

consistent with the study of Hackmann and Lӓmmerzahl 

[4]. 
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