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Abstract— The Laplace transform is a crucial tool in solving complex physical problems in physics by converting differential 

equations into algebraic ones. This paper explores its applications in electromagnetism, classical mechanics, and 

thermodynamics. It demonstrates how the Laplace transform simplifies the analysis of electrical circuits, wave propagation, and 

heat conduction. The research highlights its effectiveness through examples, providing a framework for researchers to address 

complex challenges and advance understanding in various physical domains. 

 

Keywords— Laplace transform, Lagrangian Mechanics, Integral transform, Simple pendulum, compound pendulum etc. 

 
 

1. Introduction  

Physics is a vast subject due the topics we have studied in 

physics, it is because physics rises due to a simple question 

How nature works? For most of the persons it is definition of 

the subject in itself. This question seems easier but it’s not, 

yet! there is a lot to answer for answer the perfect question, 

every new research in this field is a further step to add 

something to the answer of the question. Likewise, this paper 

may will add something to the answer. 

 

In the several branches of Physics, Mathematical physics is 

one on them which is used for developing a mathematical 

frame work for any field of the physics respectively. This 

branch of physics can directly relate with any other branches 

of physics, and the purpose of this paper is to highlight this 

statement because in this paper we are trying to simplify or 

answer the given physical problem using Laplace 

transformation, Laplace inverse transformation. 

  

Laplace transform is purely an integral transform satisfying 

the well-known definition of integral transform that is 

Integral transform If ∅(𝑝, 𝑡)𝑓(𝑡) is defined under the limits 

𝑎 and 𝑏 then 𝑇{𝑓(𝑡)}𝑝 is output of the input function 𝑓(𝑡) 

and output can be obtained by 

𝑇{𝑓(𝑡)}𝑝 = ∫ ∅(𝑡, 𝑝)𝑓(𝑡)𝑑𝑡
𝑏

𝑎

 

Where ∅(𝑡, 𝑝) is termed as kernel or nucleus of the 

transformation, it is the function of two variables 𝑝 and 𝑡. 
While 𝑓(𝑡) is a function of one variable here it is 𝑡 [1]. 

For different kernel and limits we have different integral 

transform as for Mellin transform  ∅(𝑡, 𝑝) = 𝑡𝑝−1 and limits 

from 0 to ∞. Similarly for Fourier transform ∅(𝑡, 𝑝) =
𝑒−2𝑖𝜋𝑝𝑡 and limits −∞ to ∞.  

Laplace transform is an integral transform whose ∅(𝑝, 𝑡) =
𝑒−𝑝𝑡 and limits from 0 to ∞. The output of this transform is 

denoted by ℒ [2].  

 

Mathematically,  

ℒ{𝑓(𝑡)}𝑝 = ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡
∞

0

 

With the help of above expression  

We have 

ℒ{1}𝑝 =
1

𝑝
 

ℒ{𝑡𝑛}𝑝 =
Γ(𝑛 + 1)

𝑝𝑛+1
 

ℒ{𝑒𝑎𝑡}𝑝 =
1

𝑝 − 𝑎
 

ℒ{sin 𝑎𝑡}𝑝 =
𝑎

𝑝2 + 𝑎2
 

ℒ{cos 𝑎𝑡}𝑝 =
𝑝

𝑝2 + 𝑎2
 

ℒ{sinh 𝑎𝑡}𝑝 =
𝑎

𝑝2 − 𝑎2
 

ℒ{cosh 𝑎𝑡}𝑝 =
𝑝

𝑝2 − 𝑎2
 

And the properties of Laplace transform are as follows 

1. Linearity property  

ℒ{𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)}𝑝 = 𝑎ℒ{𝑓(𝑡)}𝑝 + 𝑏ℒ{𝑔(𝑡)}𝑝 
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2. First Shifting property 

ℒ{𝑒𝑎𝑡𝑓(𝑡)}𝑝 = ℒ{𝑓(𝑡)}𝑝=𝑝−𝑎 

3. Second Shifting property 

If ℒ{𝑓(𝑡)} = 𝐹(𝑝) and  

𝑔(𝑡) = {
𝐹(𝑡 − 𝑎), 𝑡 > 𝑎

0, 𝑡 < 𝑎
 

Then 

ℒ{𝐺(𝑡)} = 𝑒−𝑎𝑝𝐹(𝑝) 
4. Change of scale 

If ℒ{𝑓(𝑡)} = 𝐹(𝑝) then 

ℒ{𝑓(𝑎𝑡)} =
1

𝑎
𝐹 (
𝑝

𝑎
) 

 

5. Multiple by t 

If ℒ{𝑓(𝑡)} = 𝐹(𝑝) then 

ℒ{𝑡𝑛𝑓(𝑡)} = (−1)𝑛
𝑑𝑛𝐹(𝑝)

𝑑𝑝𝑛
 

6. Division by t 

If ℒ{𝑓(𝑡)} = 𝐹(𝑝) then 

ℒ {
𝑓(𝑡)

𝑡
} = ∫ 𝐹(𝑝)𝑑𝑝

∞

𝑝

 

7. n
th

 order derivative 

If ℒ{𝑓(𝑡)} = 𝐹(𝑝) then 

ℒ {
𝑑𝑛

𝑑𝑡𝑛
𝑓(𝑡)} = 𝑝𝑛𝐹(𝑝) −∑𝑝𝑛−𝑘 |

𝑑𝑘−1𝑓(𝑡)

𝑑𝑡𝑘−1
|
𝑡=0

𝑛

𝑘=1

 

 

These all properties are helpful for solving given problem 

easier or in other words for simplifying the given problem we 

have used these properties respectively.  

Now, coming on the inverse integral transform, which is 

defined as  

 

Inverse Integral transform   

𝑓(𝑡) = ∫ ∅−1(𝑝, 𝑡)𝑇{𝑓(𝑡)}𝑝𝑑𝑝
𝑢2

𝑢1

 

One can easily found the inverse Laplace transform from 

Laplace transform of the given problem that’s why generally 

we want require to solve another integral for inverse 

transform when we already got its transform. But in case of 

Fourier and other transform we must have to find both 

integral’s value. 

If ℒ denoted Laplace transform then ℒ−1 denotes inverse 

Laplace transform. For instance, we use  

ℒ−1 (
1

𝑝
) = 1 

ℒ−1 (
Γ(𝑛 + 1)

𝑝𝑛+1
) = 𝑡𝑛 

ℒ−1 (
1

𝑝 − 𝑎
) = 𝑒𝑎𝑡 

ℒ−1 (
𝑎

𝑝2 + 𝑎2
) = sin 𝑎𝑡 

ℒ−1 (
𝑝

𝑝2 + 𝑎2
) = cos 𝑎𝑡 

ℒ−1 (
𝑎

𝑝2 − 𝑎2
) = sinh 𝑎𝑡 

ℒ−1 (
𝑝

𝑝2 − 𝑎2
) = cosh 𝑎𝑡 

It is a notable point that Laplace transform with its inverse is 

very useful for solving differential equations whether its 

linear differential equation with constant coefficients or either 

variable coefficient. In other words, Laplace transform 

combinedly with its inverse is a mathematical tool useful in 

physics too! As in every third or fourth topic in physics we 

have to deals with differential equations that’s increase the 

necessity of integral transformations.  

 

Let’s take an example, suppose we have to solve 

𝑑2𝑥

𝑑𝑡2
+ 𝑎2𝑥 = 0 

With 𝑥(0) = 2 and 𝑥′(0) = 0. Now, Let’s solve the equation 

𝑑2𝑥

𝑑𝑡2
+ 𝑎2𝑥 = 0 

On taking Lapace transform both sides, 

𝐿[𝑥"(𝑡)] + 𝑎2𝐿[𝑥(𝑡)] = 0 

𝑝2𝐿[𝑥(𝑡)] − 𝑝𝐿[𝑥(0)] − 𝑥′(0) + 𝑎2𝐿[𝑥(𝑡)] = 0 

(𝑝2 + 𝑎2)𝐿[𝑥(𝑡)] − 𝑝𝐿[𝑥(0)] − 𝑥′(0) = 0 

(𝑝2 + 𝑎2)𝐿[𝑥(𝑡)] = 𝑝𝐿[𝑥(0)] + 𝑥′(0) 

𝐿[𝑥(𝑡)] =
𝑝𝐿[𝑥(0)] + 𝑥′(0)

(𝑝2 + 𝑎2)
 

𝐿[𝑥(𝑡)] =
𝑝

(𝑝2 + 𝑎2)
𝐿[𝑥(0)] +

1

(𝑝2 + 𝑎2)
𝑥′(0) 

Since it was given 𝑥(0) = 2 and 𝑥′(0) = 0. Therefore  

𝐿[𝑥(𝑡)] = 2
𝑝

(𝑝2 + 𝑎2)
 

On taking inverse Laplace transform, we have 

𝐿−1𝐿[𝑥(𝑡)] = 𝐿−1 [2
𝑝

(𝑝2 + 𝑎2)
] 

𝑥(𝑡) = 2𝐿−1 [
𝑝

𝑝2 + 𝑎2
] 

𝑥(𝑡) = 2 cos 𝑎𝑡 

This is the method for solving a given differential equation. 
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This paper contains various sections as abstract, keywords, 

introduction, related work, applications, conclusion, 

references. 

 

2. Related Work  

The Laplace transform is an essential tool for developing 

mathematical models to solve equations. It converts a 

function f(t) from its time domain into the frequency domain 

F(s). The inverse Laplace transform then translates this 

frequency domain F(s) back into the time domain. 

Essentially, the Laplace transform simplifies differential or 

integral equations into algebraic equations, making it a 

powerful analytical tool for engineering problems [3]. 

This transformation technique is widely employed in solving 

higher-order differential equations and has a multitude of 

applications across mathematics, applied sciences, and 

engineering. It is particularly useful in calibrating integral and 

differential systems, circuit systems, mechanical systems, 

avionics systems, and image processing, among other areas. 

The following section will discuss the application of the 

Laplace transform in various fields. 

For parabolic and hyperbolic heat conduction equations, the 

classical variational principle is not applicable. P. Szymczyk 

and M. Szymczyk (2015) [4] explored and explained the 

principles governing these equations. Their study focuses on 

models such as the Cattaneo-Vernotte model, Jeffrey model, 

and two-temperature models, among others. Laplace 

transformations are utilized to derive classical variational 

principles. Sumit Gupta et al. (2015) [5] developed a method 

for solving linear and nonlinear convection-diffusion 

problems encountered in physical phenomena where energy 

is transferred through diffusion and convection. The 

Homotopy Perturbation Transformation Method (HPTM) is 

introduced, which combines the Laplace transform with 

homotopy perturbation, thereby simplifying the solution of 

convection-diffusion equations. 

WK Zahra et al. (2017) [6] investigated fractional linear 

electrical systems and introduced new parameters for the 

generalization of RL and RC circuits. The study compares 

classical electrical systems with fractional electrical systems. 

Fractional linear electrical systems are addressed using 

fractional calculus, offering a more accurate representation of 

real inductors and capacitors. Solutions for fractional models 

of RL and RC circuits are derived using the Laplace 

transform. Throughout this paper, we will further discuss 

several other cases from various branches of physics where 

the Laplace transform can be applied. 

3. Applications 

In this section of the paper, we are considering several 

applications that simply means physical problems that we’ll 

handle using Laplace transform:  

 

3.1. Radioactive decay 

With reference to the law of radioactive decay which states 

that, “For a particular time, the rate of radioactive decay of 

an atom is directly proportional to the number of nuclei of the 

elements present at that time.” [7] 

Mathematically, 

−𝑑𝑁

𝑑𝑡
∝ 𝑁 

Or 

𝑑𝑁

𝑑𝑡
= −𝜆𝑁 

⇒
𝑑𝑁

𝑑𝑡
+ 𝜆𝑁 = 0 

On taking Lapace transform both sides, we have 

𝐿 [
𝑑𝑁

𝑑𝑡
+ 𝜆𝑁] = 0 

⇒ 𝐿 [
𝑑𝑁

𝑑𝑡
] + 𝐿[𝜆𝑁] = 0 

⇒ 𝐿 [
𝑑𝑁

𝑑𝑡
] + 𝜆𝐿[𝑁] = 0 

⇒ 𝑝𝐿[𝑁(𝑡)] − 𝑁′(0) + 𝜆𝐿[𝑁(𝑡)] = 0 

⇒ (𝑝 + 𝜆)𝐿[𝑁(𝑡)] − 𝑁′(0) = 0 

⇒ (𝑝 + 𝜆)𝐿[𝑁(𝑡)] = 𝑁(0) 

⇒ 𝐿[𝑁(𝑡)] =
𝑁(0)

(𝑝 + 𝜆)
 

Now, take Laplace inverse both sides, 

𝑁(𝑡) = 𝑁(0)𝐿−1 (
1

𝑝 +  𝜆
) 

𝑁(𝑡) = 𝑁(0)𝑒−𝜆𝑡 

Where, 𝑁(0) is the number of nuclei initially while number 

of nuclei present at time 𝑡 is 𝑁 and 𝜆 is constant of 

proportionality. 

 

 
Figure 1 Radioactive decay 

 

In this figure 1, radioactive decay has been shown as t 

approaches to infinite number of nuclei becomes zero. N(0) is 

the initial number of nucleus and these are in under 

exponential decay. 

 

3.2. Spring Mass system 
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At the equilibrium position the spring is relaxed. When the 

block is displaced through a distance x towards right, it 

experiences a net restoring force F = -kx towards left. 

 

 

The negative sign shows that the restoring force is always 

opposite to the displacement. That is, when x is positive, F is 

negative, the force is directed to the left. When x is negative, 

F is positive, the force is directed to the right. Thus, the force 

always tends to restore the block to its equilibrium position x 

= 0. 

 
Figure 2: Spring-Mass system 

 

𝐹 = −𝑘𝑥 

Applying Newton’s Second law of motion and 𝑎 =
𝑑𝑣

𝑑𝑡
, 𝑣 =

𝑑𝑥

𝑑𝑡
 

𝑚𝑎 = −𝑘𝑥 

⇒ 𝑚
𝑑𝑣

𝑑𝑡
= −𝑘𝑥 

⇒ 𝑚
𝑑

𝑑𝑡
(
𝑑𝑥

𝑑𝑡
) = −𝑘𝑥 

⇒ 𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥 

⇒
𝑑2𝑥

𝑑𝑡2
= −

𝑘

𝑚
𝑥 

Let 𝑤2 =
𝑘

𝑚
, 

⇒
𝑑2𝑥

𝑑𝑡2
= −𝑤2𝑥 

⇒
𝑑2𝑥

𝑑𝑡2
+ 𝑤2𝑥 = 0 

⇒ 𝑥"(𝑡) + 𝑤2𝑥(𝑡) = 0 

Taking Lapace transform on both sides  

𝐿[𝑥"(𝑡) + 𝑤2𝑥(𝑡)] = 0 

⇒ 𝐿[𝑥"(𝑡)] + 𝑤2𝐿[𝑥(𝑡)] = 0 

⇒ 𝑝2𝐿[𝑥(𝑡)] − 𝑝𝐿[𝑥(0)] − 𝑥′(0) + 𝑤2𝐿[𝑥(𝑡)] = 0 

⇒ (𝑝2 +𝑤2)𝐿[𝑥(𝑡)] − 𝑝𝐿[𝑥(0)] − 𝑥′(0) = 0 

⇒ (𝑝2 + 𝑤2)𝐿[𝑥(𝑡)] = 𝑝𝐿[𝑥(0)] + 𝑥′(0) 

⇒ 𝐿[𝑥(𝑡)] =
𝑝𝐿[𝑥(0)] + 𝑥′(0)

(𝑝2 + 𝑤2)
 

⇒ 𝐿[𝑥(𝑡)] =
𝑝

(𝑝2 + 𝑤2)
𝐿[𝑥(0)] +

1

(𝑝2 +𝑤2)
𝑥′(0) 

Let 𝑥′(0) = 0 and take Laplace inverse both sides, 

𝑥(𝑡) = 𝑥(0) cos𝑤𝑡 

Where, 𝑥(0) = 𝐴 i.e. amplitude  

𝑥(𝑡) = 𝐴 cos𝑤𝑡. 

3.3. Simple pendulum 

 

 
Figure 3 Oscillation of a simple pendulum 

 

A simple pendulum is a mechanical arrangement that 

demonstrates periodic motion. The simple pendulum 

comprises a small bob of mass ‘m’ suspended by a thin string 

secured to a platform at its upper end of length L. 

 

The simple pendulum is a mechanical system that sways or 

moves in an oscillatory motion. This motion occurs in a 

vertical plane and is mainly driven by gravitational force. 

Interestingly, the bob that is suspended at the end of a thread 

is very light; somewhat, we can say it is even massless. The 

assumptions we are considering are as follows: -  

 There is negligible friction from the air and the 

system 

 The arm of the pendulum does not bend or compress 

and is massless 

 The pendulum swings in a perfect plane 

 Gravity remains constant 

 

 
Figure 4: Geomerty of Simple Pendulum 
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As the distance taken by an arc from C to A therefore 

𝜃 =
𝐴𝐶

𝑙
⇒ 𝐴𝐶 = 𝑙𝜃. With differentiate it with respect to time 

we have 𝑣 = 𝑙�̇�. 

 

For point C, kinetic energy (𝑇) can be obtained by   

𝑇 =
1

2
𝑚𝑣2 =

1

2
𝑚(𝑙�̇�)

2
=
1

2
𝑚𝑙2�̇�2 

 

While for the same point, potential energy (𝑉) can be 

obtained by   

𝑉 = 𝑚𝑔ℎ = 𝑚𝑔𝑙(1 − cos 𝜃) 
 

With reference to the Lagrange mechanics, Lagrangian (𝐿) 
[8] can be obtained by  

𝐿 = 𝑇 − 𝑉 

=
1

2
𝑚𝑙2�̇�2 −𝑚𝑔𝑙(1 − cos 𝜃) 

Now, 
𝜕𝐿

𝜕𝜃
= −𝑚𝑔𝑙 sin 𝜃 ,

𝜕𝐿

𝜕�̇�
= 𝑚𝑙2�̇� 

Using Lagrange equation, we have 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= 0 

⇒
𝑑

𝑑𝑡
(𝑚𝑙2�̇�) + 𝑚𝑔𝑙 sin 𝜃 = 0 

⇒ 𝑚𝑙2�̈� + 𝑚𝑔𝑙 sin 𝜃 = 0 

For small 𝜃, sin 𝜃 ~𝜃. So,  

𝑚𝑙2�̈� + 𝑚𝑔𝑙𝜃 = 0 

⇒ �̈� +
𝑔

𝑙
𝜃 = 0 

Using 𝑤 = √
𝑔

𝑙
, we can rewrite the above equation as 

�̈� + 𝑤2𝜃 = 0 

 

On taking Lapace transform on both sides 

𝐿[𝜃"(𝑡)] + 𝑤2𝐿[𝜃(𝑡)] = 0 

⇒ 𝑝2𝐿[𝜃(𝑡)] − 𝑝𝐿[𝜃(0)] − 𝜃′(0) + 𝑤2𝐿[𝜃(𝑡)] = 0 

⇒ (𝑝2 +𝑤2)𝐿[𝜃(𝑡)] = 𝑝𝐿[𝜃(0)] + 𝜃′(0) 

⇒ 𝐿[𝜃(𝑡)] =
𝑝

(𝑝2 +𝑤2)
𝜃(0) +

1

(𝑝2 + 𝑤2)
𝜃′(0) 

 

Let 𝜃(0) =constant and take Laplace inverse both sides, 

𝜃(𝑡) = 𝜃(0)𝐿−1 [
𝑝

(𝑝2 +𝑤2)
] + 𝜃′(0)𝐿−1 [

1

(𝑝2 + 𝑤2)
] 

⇒ 𝜃(𝑡) = 𝜃(0) cos𝑤𝑡 +
𝜃′(0)

𝑤
sin𝑤𝑡 

Suppose 𝜃(0) = 𝐴 sin∅ , 

𝜃′(0)

𝑤
= 𝐴 cos∅ 

𝜃(𝑡) = 𝐴 sin∅ cos𝑤𝑡 + 𝐴 cos ∅ sin𝑤𝑡 

⇒ 𝜃(𝑡) = 𝐴 sin(𝑤𝑡 + ∅) 

A is generally the amplitude then Time period can be 

obtained by 

𝑇 =
2𝜋

𝑤
= 2𝜋√

𝑙

𝑔
 

Where, 𝑤 = √
𝑔

𝑙
 

 

3.4. Compound pendulum 

In case of compound pendulum, we can obtain Lagrangian 

(𝐿) in terms of momentum of inertia [9]: 

 

𝐿 =
1

2
𝐼�̇�2
⏞  
𝑇

+𝑀𝑔𝑙 cos 𝜃⏞      
−𝑉

 

Where 𝐼 is moment of inertia. Now, 

𝜕𝐿

𝜕𝜃
= −𝑀𝑔𝑙 sin 𝜃 ,

𝜕𝐿

𝜕�̇�
= 𝐼�̇� 

Using Lagrange equation, we have 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= 0 

⇒
𝑑

𝑑𝑡
(𝐼�̇�) + 𝑀𝑔𝑙 sin 𝜃 = 0 

⇒ 𝐼�̈� + 𝑀𝑔𝑙 sin 𝜃 = 0 

Again, for small 𝜃, sin 𝜃 ~𝜃. So, 

𝐼�̈� + 𝑀𝑔𝑙𝜃 = 0 

⇒ �̈� +
𝑀𝑔𝑙

𝐼
𝜃 = 0 

Using 
𝑀𝑔𝑙

𝐼
= 𝑤2. Then 

�̈� + 𝑤2𝜃 = 0 

 

On taking Lapace transform on both sides 

𝐿[𝜃"(𝑡)] + 𝑤2𝐿[𝜃(𝑡)] = 0 

⇒ 𝑝2𝐿[𝜃(𝑡)] − 𝑝𝐿[𝜃(0)] − 𝜃′(0) + 𝑤2𝐿[𝜃(𝑡)] = 0 

⇒ (𝑝2 +𝑤2)𝐿[𝜃(𝑡)] = 𝑝𝐿[𝜃(0)] + 𝜃′(0) 

⇒ 𝐿[𝜃(𝑡)] =
𝑝

(𝑝2 +𝑤2)
𝜃(0) +

1

(𝑝2 + 𝑤2)
𝜃′(0) 

 

Let 𝜃(0) =constant and take Laplace inverse both sides, 

𝜃(𝑡) = 𝜃(0)𝐿−1 [
𝑝

(𝑝2 +𝑤2)
] + 𝜃′(0)𝐿−1 [

1

(𝑝2 + 𝑤2)
] 

⇒ 𝜃(𝑡) = 𝜃(0) cos𝑤𝑡 +
𝜃′(0)

𝑤
sin𝑤𝑡 

Suppose 𝜃(0) = 𝐴 sin∅ , 

𝜃′(0)

𝑤
= 𝐴 cos∅ 

𝜃(𝑡) = 𝐴 sin∅ cos𝑤𝑡 + 𝐴 cos ∅ sin𝑤𝑡 

⇒ 𝜃(𝑡) = 𝐴 sin(𝑤𝑡 + ∅) 

A is generally the amplitude then Time period can be 

obtained by 

𝑇 =
2𝜋

𝑤
 

Where, 𝑤 = √
𝑔

𝑙
 

𝑇 =
2𝜋

√𝑀𝑔𝑙
𝐼

= 2𝜋√
𝐼

𝑀𝑔𝑙
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Moment of inertial of the pendulum about the axis of rotation 

gives 𝐼 = 𝑀(𝐾2 + 𝑙2). Then on substituting it 

𝑇 = 2𝜋√
𝑀(𝐾2 + 𝑙2)

𝑀𝑔𝑙
= 2𝜋√

𝐾2 + 𝑙2

𝑔𝑙
 

 

3.5. Atwood Machine 

In 1784, the Rev. George Atwood 

(1745-1807), tutor at Trinity 

College, Cambridge, came up with 

a great demo for finding g. It’s still 

with us. The traditional Newtonian 

solution of this problem is to 

write F=ma for the two masses, 

then eliminate the tension T. (To 

keep things simple, we’ll neglect 

the rotational inertia of the top 

pulley.) 

The Lagrangian approach [10][11] is, of course, to write 

down the Lagrangian, and derive the equation of motion. 

Measuring gravitational potential energy from the top wheel 

axle, the potential energy is 

𝑈 = −𝑚1𝑔𝑥 − 𝑚2𝑔(𝑙 − 𝑥) 

While kinetic energy be 

𝑇 =
1

2
(𝑚1 +𝑚2)�̇�

2 

Then the Lagrangian for this system be 

𝐿 = 𝑇 − 𝑈 

⇒ 𝐿 =
1

2
(𝑚1 +𝑚2)�̇�

2 +𝑚1𝑔𝑥 + 𝑚2𝑔(𝑙 − 𝑥) 

Now, 

𝜕𝐿

𝜕𝑥
= 𝑚1𝑔 − 𝑚2𝑔 = 𝑔(𝑚1 −𝑚2),

𝜕𝐿

𝜕�̇�
= (𝑚1 +𝑚2)�̇� 

 

 
Figure 5 A two-dimensional figure showing Atwood machine 

contains two masses m1 and m2 

Using Lagrange equation, we have 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑥
= 0 

⇒
𝑑

𝑑𝑡
[(𝑚1 +𝑚2)�̇�] − 𝑔(𝑚1 −𝑚2) = 0 

⇒ (𝑚1 +𝑚2)�̈� + −𝑔(𝑚1 −𝑚2) = 0 

⇒ 𝑥" = (
𝑚1 −𝑚2

𝑚1 +𝑚2

) 𝑔 

Taking Lapace transform on both sides, 

𝐿[𝑥"(𝑡)] = (
𝑚1 −𝑚2

𝑚1 +𝑚2

) 𝑔𝐿[1] 

𝑃2𝐿[𝑥(𝑡)] − 𝑃𝐿[𝑥(0)] − 𝑥′(0) = (
𝑚1 −𝑚2

𝑚1 +𝑚2

)𝑔 (
1

𝑃
) 

𝑃2𝐿[𝑥(𝑡)] = (
𝑚1 −𝑚2

𝑚1 +𝑚2

)𝑔 (
1

𝑃
) + 𝑃𝐿[𝑥(0)] + 𝑥′(0) 

𝐿[𝑥(𝑡)] = (
𝑚1 −𝑚2

𝑚1 +𝑚2

) 𝑔 (
1

𝑃3
) +

1

𝑃
𝐿[𝑥(0)] +

1

𝑃2
𝑥′(0) 

Now, take Laplace inverse both sides, 

𝐿−1𝐿[𝑥(𝑡)] =

{
 

 𝑔 (
𝑚1 −𝑚2

𝑚1 +𝑚2

) 𝐿−1 (
1

𝑃3
) + 𝐿[𝑥(0)]𝐿−1 (

1

𝑃
)

+𝑥′(0)𝐿−1 (
1

𝑃2
) }

 

 
 

Since 𝐿−1 (
1

𝑃3
) =

1

2
𝐿−1 (

2!

𝑃3
) =

1

2
𝑡2 and 𝐿−1 (

1

𝑃2
) =

𝑡, 𝐿−1 (
1

𝑃
) = 1. Thus 

⇒ 𝑥(𝑡) =
1

2
(
𝑚1 −𝑚2

𝑚1 +𝑚2

)𝑔𝑡2 + 𝑥(0) + 𝑡𝑥′(0) 

 

3.6. Newton’s law of cooling  

According to Newton’s law of cooling, the rate of loss of heat 

from a body is directly proportional to the difference in 

the temperature of the body and its surroundings [12].  

Let, the rate of loss of heat be −
𝑑𝑇

𝑑𝑡
 

And the difference in the temperature of the body and its 

surroundings be 𝑇 − 𝑇𝑠. Then 

−
𝑑𝑇

𝑑𝑡
∝  (𝑇 − 𝑇𝑠) Or 

𝑑𝑇

𝑑𝑡
= −𝑘(𝑇 − 𝑇𝑠) 

Negative sign used for the loss. 

Taking Lapace transform on both sides 

𝐿[𝑇′(𝑡)] = −𝑘𝐿[𝑇(𝑡)] + 𝑘𝐿[𝑇𝑠] 

𝑝𝐿[𝑇(𝑡)] − 𝑇(0) = −𝑘𝐿[𝑇(𝑡)] + 𝑘𝐿[𝑇𝑠] 

(𝑝 + 𝑘)𝐿[𝑇(𝑡)] = 𝑘𝐿[𝑇𝑠] + 𝑇(0) 

𝐿[𝑇(𝑡)] =
𝑘𝐿[𝑇𝑠] + 𝑇(0)

(𝑝 + 𝑘)
 

Now, take Laplace inverse both sides, 

𝑇(𝑡) = 𝑘𝑒−𝑘𝑡𝐿[𝑇𝑠] + 𝑒
−𝑘𝑡𝑇(0) 

𝑇(𝑡) = 𝑒−𝑘𝑡[𝑘𝐿[𝑇𝑠] + 𝑇(0)] 

If we considered 𝑇𝑠 not varies with time (𝑡) then 

(𝑝 + 𝑘)𝐿[𝑇(𝑡)] = 𝑘𝐿[𝑇𝑠] + 𝑇(0) 

⇒ (𝑝 + 𝑘)𝐿[𝑇(𝑡)] = 𝑘𝑇𝑠𝐿[1] + 𝑇(0) 
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⇒ (𝑝 + 𝑘)𝐿[𝑇(𝑡)] = 𝑇𝑠
𝑘

𝑝
+ 𝑇(0) 

⇒ 𝐿[𝑇(𝑡)] = 𝑇𝑠
𝑘

𝑝(𝑝 + 𝑘)
+
𝑇(0)

𝑝 + 𝑘
 

⇒ 𝐿[𝑇(𝑡)] = 𝑇𝑠
(𝑝 + 𝑘) − 𝑝

𝑝(𝑝 + 𝑘)
+
𝑇(0)

𝑝 + 𝑘
 

⇒ 𝐿[𝑇(𝑡)] = 𝑇𝑠 (
1

𝑝
−

1

𝑝 + 𝑘
) +

𝑇(0)

𝑝 + 𝑘
 

⇒ 𝐿[𝑇(𝑡)] = 𝑇𝑠
1

𝑝
+ (𝑇0 − 𝑇𝑠)

1

𝑝 + 𝑘
 

Now, take Laplace inverse both sides, 

𝑇(𝑡) = 𝑇𝑠𝐿
−1 (

1

𝑝
) + (𝑇0 − 𝑇𝑠)𝐿

−1 (
1

𝑝 + 𝑘
) 

⇒ 𝑇(𝑡) = 𝑇𝑠 + (𝑇0 − 𝑇𝑠)𝑒
−𝑘𝑡 

Since 𝐿−1 (
1

𝑝
) = 1 and 𝐿−1 (

1

𝑝+𝑘
) = 𝑒−𝑘𝑡. 

 

3.7. LC Oscillations 

Let us consider an electric circuit, containing inductance 𝐿 

and capacitance 𝐶. When the charge on the condenser is 𝑞 

and the flowing in the circuit is 𝑖. 

The magnetic energy 
1

2
𝐿𝑖2 in 

an electric circuit is 

analogues to the kinetic 

energy 
1

2
𝑚𝑣2 in a mechanical 

system, where we can think 

inductance 𝐿 as charge inertia 

similar to mass inertia and 

𝑖 = 𝑑𝑞/𝑑𝑡 as 𝑣 = 𝑑𝑥/𝑑𝑡; 

charge 𝑞 is playing the role 

of displacement. The 

electrical potential energy of 

the circuit is 𝑉 = 𝑞2/2𝐶. 

Hence the Lagrange of L-C 

circuit [13][14] is 

𝐿 = 𝑇 − 𝑉 =
1

2
𝐿𝑖2 −

𝑞2

2𝐶
 

=
1

2
𝐿 (
𝑑𝑞

𝑑𝑡
)
2

−
𝑞2

2𝐶
=
1

2
𝐿�̇�2 −

𝑞2

2𝐶
 

Taking 𝑞 as the generalized coordinate, the Lagrange’s 

equation is given by 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑞
= 0 

Here 

𝜕𝐿

𝜕�̇�
= 𝐿�̇� ,

𝜕𝐿

𝜕𝑞
= −

𝑞

𝐶
 

On substituting both 

⇒
𝑑

𝑑𝑡
[𝐿�̇� ] +

𝑞

𝐶
= 0 

⇒ 𝐿𝑞 ̈ +
𝑞

𝐶
= 0 

⇒ �̈� + 𝜔2𝑞 = 0 

On taking Laplace on both sides 

ℒ[�̈�+ 𝜔2𝑞] = 0 

⇒ ℒ[�̈�] + ℒ[𝜔2𝑞] = 0 

⇒ ℒ[�̈�] + 𝜔2ℒ[𝑞] = 0 

⇒ 𝑝2ℒ[𝑞] − 𝑝𝑞(0) − 𝑞′(0) + 𝜔2ℒ[𝑞] = 0 

⇒ (𝑝2 + 𝜔2)ℒ[𝑞] − 𝑝𝑞(0) − 𝑞′(0) = 0 

⇒ (𝑝2 + 𝜔2)ℒ[𝑞] = 𝑝𝑞(0) + 𝑞′(0) 

⇒ ℒ[𝑞] =
𝑝

(𝑝2 + 𝜔2)
𝑞(0) +

𝜔

(𝑝2 + 𝜔2)

𝑞′(0)

𝜔
 

On taking Inverse Laplace on both sides 

𝑞 = 𝑞(0)ℒ−1 [
𝑝

(𝑝2 +𝜔2)
] +

𝑞′(0)

𝜔
ℒ−1 [

𝜔

(𝑝2 + 𝜔2)
] 

⇒ 𝑞 = 𝑞(0) cos𝜔𝑡 +
𝑞′(0)

𝜔
sin𝜔𝑡 

Sine and cosine function of time shows the oscillating 

behaviour of the system. 

With assuming 𝑞′(0) = 0  

𝑞 = 𝑞(0) cos𝜔𝑡 
Where,  

𝜔 =
1

√𝐿𝐶
 

For time period 

𝑇 =
2𝜋

𝜔
= 2𝜋√𝐿𝐶 

For frequency 

𝑓 =
1

𝑇
=

1

2𝜋√𝐿𝐶
 

 

3.8. Damped oscillation 

Damped oscillation refers to the motion of an oscillating 

system, like a pendulum or a spring, in which the amplitude 

of oscillation gradually decreases over time due to the 

presence of a damping force, such as friction or air resistance 

[15][16]. This damping force dissipates the system's energy, 

causing the oscillations to lose intensity and eventually come 

to a stop. The rate at which the amplitude decreases depend 

on the strength of the damping force, with heavier damping 

leading to quicker cessation of oscillations. 

We will investigate the effect of damping on the harmonic 

oscillations of a simple system having one degree of freedom. 

One such system is shown in the figure. When the system is 

displaced from its equilibrium state and released, it begins to 

move. The forces acting on the system are given below: 

 
 

Figure 7 Shows spring block system 

Figure 6 

LC Circuit, contains a 

capacitor of capacitance C 

and inductor of inductance 

L. 
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 A restoring force –Kx, where K is the coefficient of the 

restoring force, and x is the displacement 

 A damping force -p(dx/dt), where p is the coefficient of 

the damping force and (dx/dt) is the velocity of the 

moving part of the system. From Newton’s law for a 

rigid body in translation, these forces must balance with 

Newton’s force m(d
2
x/dt

2
), where m is the mass of the 

oscillator and (d
2
x/dt

2
) is its acceleration. Since the 

restoring force and the damping force acts in a direction 

opposite to Newton’s force [17] , we have 

𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥 − 𝑝

𝑑𝑥

𝑑𝑡
 

⇒ 𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑘𝑥 + 𝑝

𝑑𝑥

𝑑𝑡
= 0 

⇒
𝑑2𝑥

𝑑𝑡2
+
𝑝

𝑚

𝑑𝑥

𝑑𝑡
+
𝑘

𝑚
𝑥 = 0 

Let 
𝑝

𝑚
= 2𝛼 and 

𝑘

𝑚
= 𝜔2. Then 

�̈� + 2𝛼�̇� + 𝜔2𝑥 = 0 

It is a second order linear differential equation, on taking 

Laplace 

ℒ[�̈� + 2𝛼�̇� + 𝜔2𝑥] = 0 

⇒ ℒ[�̈�] + 2𝛼ℒ[�̇�] + 𝜔2ℒ[𝑥] = 0 

⇒ (𝑝2ℒ[𝑥] − 𝑝𝑥(0) − 𝑥′(0)) + 2𝛼(𝑝𝐿[𝑥] − 𝑥(0))

+ 𝜔2ℒ[𝑥] = 0 

⇒ (𝑝2 + 2𝛼𝑝 + 𝜔2)ℒ[𝑥] − (𝑝 + 2𝛼)𝑥(0) − 𝑥′(0) = 0 

⇒ (𝑝2 + 2𝛼𝑝 + 𝛼2 + 𝜔2 − 𝛼2)ℒ[𝑥]
= (𝑝 + 2𝛼)𝑥(0) + 𝑥′(0) 

⇒ ((𝑝 + 𝛼)2 + (√𝜔2 − 𝛼2)
2

)ℒ[𝑥]

= (𝑝 + 2𝛼)𝑥(0) + 𝑥′(0) 

⇒ ℒ[𝑥] =
(𝑝 + 2𝛼)

((𝑝 + 𝛼)2 + (√𝜔2 − 𝛼2)
2
)
𝑥(0)

+
1

((𝑝 + 𝛼)2 + (√𝜔2 − 𝛼2)
2
)
𝑥′(0) 

⇒ ℒ[𝑥]

=
(𝑝 + 𝛼)

(𝑝 + 𝛼)2 + (√𝜔2 − 𝛼2)
2 𝑥(0)

+
𝛼

√𝜔2 − 𝛼2

√𝜔2 − 𝛼2

(𝑝 + 𝛼)2 + (√𝜔2 − 𝛼2)
2 𝑥(0)

+
1

√𝜔2 − 𝛼2

√𝜔2 − 𝛼2

(𝑝 + 𝛼)2 + (√𝜔2 − 𝛼2)
2 𝑥′(0) 

On taking inverse Laplace on both sides 

⇒ 𝑥(𝑡)

= 𝑥(0)ℒ−1 [
(𝑝 + 𝛼)

(𝑝 + 𝛼)2 + (√𝜔2 − 𝛼2)
2]

+ 𝑥(0)
𝛼

√𝜔2 − 𝛼2
ℒ−1 [

√𝜔2 − 𝛼2

(𝑝 + 𝛼)2 + (√𝜔2 − 𝛼2)
2]

+ 𝑥′(0)
1

√𝜔2 − 𝛼2
ℒ−1 [

√𝜔2 − 𝛼2

(𝑝 + 𝛼)2 + (√𝜔2 − 𝛼2)
2] 

Using first shifting of Laplace transform we can say that 

ℒ−1 [
(𝑝 + 𝛼)

(𝑝 + 𝛼)2 + (√𝜔2 − 𝛼2)
2] = 𝑒

−𝛼𝑡 cos (𝑡√𝜔2 − 𝛼2), 

ℒ−1 [
√𝜔2 − 𝛼2

(𝑝 + 𝛼)2 + (√𝜔2 − 𝛼2)
2] = 𝑒

−𝛼𝑡 sin (𝑡√𝜔2 − 𝛼2) 

On substituting both 

𝑥(𝑡) = 𝑥(0)𝑒−𝛼𝑡 cos (𝑡√𝜔2 − 𝛼2)

+ 𝑥(0)
𝛼

√𝜔2 − 𝛼2
𝑒−𝛼𝑡 sin (𝑡√𝜔2 − 𝛼2)

+ 𝑥′(0)
1

√𝜔2 − 𝛼2
𝑒−𝛼𝑡 sin (𝑡√𝜔2 − 𝛼2) 

𝑥(𝑡)

= 𝑒−𝛼𝑡 (𝑥(0) cos (𝑡√𝜔2 − 𝛼2)

+
𝑥′(0) sin(𝑡√𝜔2 − 𝛼2) + 𝛼𝑥(0) sin(𝑡√𝜔2 − 𝛼2)

√𝜔2 − 𝛼2
) 

Using 𝛼 =
𝑝

2𝑚
 and 𝜔2 =

𝑘

𝑚
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𝑥(𝑡)

= 𝑒−
𝑝
2𝑚

𝑡

(

 
 
𝑥(0) cos(𝑡√

𝑘

𝑚
−
𝑝2

4𝑚2
)

+

𝑥′(0) sin (𝑡√
𝑘
𝑚
−
𝑝2

4𝑚2) + 𝛼𝑥(0) sin (𝑡√
𝑘
𝑚
−
𝑝2

4𝑚2)

√𝑘
𝑚
−
𝑝2

4𝑚2
)

 
 

 

And now for different cases of √
𝑘

𝑚
−

𝑝2

4𝑚2
 we can obtain 

different cases but we can’t consider the case where 
𝑘

𝑚
=

𝑝2

4𝑚2
 

in the above equation. 

 

4. Conclusion and Future Scope  
 

This paper has demonstrated the significant utility of the 

Laplace transform in solving complex physical problems 

across various domains, particularly in electromagnetism, 

classical mechanics, and thermodynamics. By converting 

differential equations into algebraic equations, the Laplace 

transform streamlines the analytical process, allowing for 

more straightforward solutions to problems that would 

otherwise be cumbersome and difficult to solve. 
 

In the analysis of LC circuits, the Laplace transform proves 

invaluable in simplifying the study of transient and steady-

state behaviors. By transforming the circuit's differential 

equations into algebraic forms, the transform makes it easier 

to determine the system's response to different inputs, such as 

step functions or sinusoidal sources. This approach not only 

enhances the understanding of circuit dynamics but also 

provides a powerful method for predicting the behavior of 

more complex electrical networks. 
 

In the context of classical mechanics, the Laplace transform is 

applied effectively to the Atwood machine—a system 

traditionally studied through Newtonian mechanics. The 

transformation simplifies the equations of motion, making it 

easier to explore the machine's dynamics under various 

conditions, including different masses and pulley systems. 

Similarly, for the simple and compound pendulums, the 

Laplace transform offers a means to analyze oscillatory 

motion and damping effects. It converts the complex, second-

order differential equations governing these systems into 

more manageable algebraic forms, providing clear insights 

into the behavior of the pendulums under various initial 

conditions and external forces. 
 

The effectiveness of the Laplace transform in these specific 

applications suggests a broader potential for its use in other 

areas of physics and engineering. Future research could 

extend these techniques to more complex systems, such as 

multi-degree-of-freedom mechanical systems, non-linear 

electrical circuits, and advanced thermodynamic processes. 

Moreover, the Laplace transform could be combined with 

numerical methods to tackle problems where analytical 

solutions are not feasible, offering a hybrid approach that 

leverages both symbolic and numerical computation. 

 

In conclusion, the Laplace transform stands as a powerful tool 

that not only simplifies the analysis of complex physical 

systems but also enhances the accuracy and efficiency of 

solutions. Its application across various domains underscores 

its versatility and potential, paving the way for future 

advancements in both theoretical and applied physics. As 

researchers continue to explore and expand upon these 

techniques, the Laplace transform will likely remain a 

cornerstone in the study and resolution of complex physical 

phenomena. 
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