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Abstract — An attempt has been made to investigate the effects of uniform vertical magnetic field and uniform rotation on 

thermal convection in Walters B' viscoelastic fluid. Following the linearized stability theory, Boussinesq approximation and 

normal mode analysis, the dispersion relation is obtained. In the scenario of stationary convection, Walters B' viscoelastic fluid 

behaves like a Newtonian Fluid.  Further, it is found that rotation has a stabilizing effect whereas the magnetic field has both 

stabilizing and destabilizing effects.  In addition to this, it has been discovered that the system is reliable for  
gακ

νβ
≤

(1 − 2σrF)
27π4

4
   and under the conditions 

gακ

νβ
> (1 − 2σrF)

27π4

4
  and 0 ≤ σr ≤

1

2F
  the system goes into an unstable state. 

Overstability has also been looked at from the perspective of a scenario in which sufficient circumstances are met to rule out the 

possibility of the phenomenon occurring. It has been discovered that the rotation, magnetic field and viscoelasticity introduce 

oscillatory modes in the system which were non-existent in their absence. 

 

Keywords — Thermal Convection; Walters B' Viscoelastic Fluid; Uniform Vertical Magnetic Field; Uniform Rotation; Linear 

Stability Theory; Normal Mode Analysis method

 
 

1. Introduction 
 

A comprehensive account of thermal convection (Be’nard 

convection) in a fluid layer, in the absence and presence of 

rotation and magnetic field has been given [1]. The use of 

Boussinesq approximation has been made throughout, which 

states that the variations of density in the equations of motion 

can safely be ignored everywhere except in its association 

with the external force. The approximation is well justified in 

the case of incompressible fluids. The influence of Rayleigh-

number in turbulent and laminar region in parallel-plate 

vertical channels has been studied [2]. The influence of 

radiation on the unsteady free convection flow of a viscous 

incompressible fluid past a moving vertical plate with 

Newtonian heating has been investigated theoretically [3]. 

The stability of a horizontal layer of Maxwell’s viscoelastic 

fluid heated from below has been studied [4]. The nature of 

instability and some factors may have different effects, on 

viscoelastic fluids as compared to the Newtonian fluids. For 

example, the effect of a uniform rotation on the thermal 

instability of a Maxwell fluid has been studied and found that 

rotation has a destabilizing influence, in contrast to the 

stabilizing effect on a Newtonian fluid [5]. The thermal 

instability of a Maxwell fluid in hydromagnetics has been 

studied and have found that the magnetic field has stabilizing 

effect on viscoelastic fluid, just as in case of Newtonian fluid 

[6]. The thermal instability of a layer of Oldroydian fluid 

acted on by a uniform rotation has been analysed and found 

that rotation has destabilizing and stabilizing effects under 

certain conditions, in contrast to a Maxwell fluid where the 

effect is destabilizing [7,8]. In another study, the stability of a 

layer of an electrically conducting Oldroyd fluid in the 

presence of a magnetic field has been studied and found that 

the magnetic field has a stabilizing influence [9]. Many 

common materials such as paints, polymers, plastics and more 

exotic one such as silicic magma, saturated soils and the 

Earth’s lithosphere behaves as viscoelastic fluids. Due to the 

growing use of these viscoelastic materials in various 

manufacturing and processing industries, in geophysical fluid 

dynamics, in chemical technology and in petroleum industry, 

considerable effort has been directed towards understanding 

their flow. 

 

There are many elastico-viscous fluids that cannot be 

characterize by Maxwell’s constitutive relations or Oldroyd’s 

constitutive relations.  One such class of viscoelastic fluid is 
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Walters B   fluid [10]. It is reported that the mixture of 

polymethyl methacrylate and pyridine at 25
0
C containing 

30.5g of polymer per litre with density 0.98 g per litre 

behaves very nearly as the Walters B   viscoelastic fluid [11]. 

Polymers are used in the manufacture of spacecrafts, 

aeroplanes, tyres, belt conveyers, ropes, cushions, seats, 

foams, plastic engineering equipments, contact lens etc. 

Walters B' viscoelastic fluid forms the basis for the 

manufacture of many such important and useful products.  

 

In many geophysical fluid dynamical problems encountered, 

the fluid is electrically conducting and a uniform magnetic 

field of the Earth pervades the system. A layer of such fluid 

heated from below under the action of magnetic field and 

rotation may find applications in geophysics, interior of the 

Earth, oceanography and the atmospheric physics. Keeping in 

mind the importance of viscoelastic fluids, convection in fluid 

layer heated from below, magnetic field and rotation; the 

present paper attempts to study the effect of uniform vertical 

magnetic field on Walters B   viscoelastic fluid heated from 

below in the presence of a uniform rotation. 

 

2. Related Work 
 

The flow of unsteady viscoelastic (Walters liquid B  ) 

conducting fluid through two porous concentric non-

conducting infinite circular cylinders rotating with different 

angular velocities in the presence of a uniform axial magnetic 

field has been studied [12]. The stability of two superposed 

Walters B' viscoelastic liquids have been studied [13]. In 

another study, the Rayleigh-Taylor instability of two 

superposed conducting Walters B' elastico-viscous fluids in 

hydromagnetics has been given [14]. The effect of rotation on 

thermal instability in Walters elastico-viscous fluid has been 

studied and found that for stationary convection, rotation has 

a stabilizing effect [15]. The stability of plane interface 

separating the Walters B' viscoelastic superposed fluids of 

uniform densities in the presence of suspended particles has 

been considered [16].   

 

3. Mathematical Formulation of the Problem  
 

The present problem is studied using methods of linearized 

stability theory and normal mode analysis. First of all 

linearized perturbation equations relevant to the problem are 

obtained and then in section 3 the dispersion relation obtained 

by using normal analysis method.  

 

Consider an infinite, horizontal, incompressible electrically 

conducting Walters B   viscoelastic fluid layer of thickenss d, 

heated from below so that, the temperatures and densities at 

the bottom surface z = 0 are T0 and 0  and at the upper 

surface z = d are Td and d  respectively and that a uniform 

temperature gradient 











dz

dT
  is maintained. The gravity 

 gg ,0,0


, a uniform vertical magnetic field  HH ,0,0


 and a 

uniform vertical rotation   ,0,0


 act on the system. 

Let    and,,,,,, Tpwvuq


 denote the fluid velocity, 

pressure, density, temperature, kinematic viscosity and 

kinematic viscoelasticity, respectively and  z,y,xr 


.  

Then the momentum balance, mass balance and energy 

balance equations of Walters B   viscoelastic fluid in the 

presence of magnetic field and rotation are 
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 ,                                          (1) 
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

,                                                                                (2) 

  TTq
t

T 2






,                                                             (3) 
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 ,                                                                              (4) 

  HqH
t

H 

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


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The equation of state is 

  00 1 TT   ,                                                              (6) 

 

where 00,T  are respectively, the density and temperature of 

the fluid at the reference level z = 0 and α is the coefficient of 

thermal expansion.  In writing equation (1), use has been 

made of the Boussinesq approximation, which states that the 

density variations are ignored in all terms in the equations of 

motion except the external force term.  The magnetic 

permeability e , thermal diffusivity   and electrical 

resistivity η are all assumed to be constants. 

The steady solution is 

   .1,,0,0,0 00 zzTTq  


                             (7) 

 

Let    ,,,,, pwvuq


 and  zyx hhhh ,,


 denote respectively the 

perturbations in velocity q


 (initially zero), pressure p, density 

ρ, temperature T and the magnetic field  HH ,0,0


.  The 

change in density  , caused by the perturbation  in 

temperature, is given by 
    000 1  TT   

i.e.  

 0  .                                                                         (8) 

Then the linearized perturbation equations for Walters B  
viscoelastic fluid are 
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  hqH
t
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 .                                                           (13) 

Within the framework of Boussinesq approximation, 

equations (9) - (13), become 

zyx
g

z

h

w
t

w
t

z

e




































































2

4

2

2

2

2

2

0

42

                                         (14) 

z

H

z

w

tt

e





































0

2

4

2

  ,                                               (15) 

w
t

 











 2  ,                                                               (16) 

z

w
Hh

t
z

















 2   ,                                                        (17) 

z
H

t 















 
 2   ,                                                         (18) 

where 
2

2

2

2

2

2
2

zyx 












  and 

y

h

x

h

y

u

x

v xy



















  ; , 

stand for the z-components of vorticity and current density, 

respectively. 

 

4. The Dispersion Relation 
 

We decompose the disturbances into normal modes and 

assume that the perturbed quantities are of the form 

            
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                                                                                                 (19) 
where kx, ky are the wave numbers along x-and y-directions, 

respectively,   2
1

22
yx kkk   is the resultant wave number and 

n is the growth rate which is, in general, a complex constant. 

Using expression (19), equations (14) - (18) in non-

dimensional form transform to 
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where we have introduced new co-ordinates 
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For convenience, the dashes are dropped hereafter.  Also we 

have put a = kd, 
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F
nd

 is the Prandtl 

number and 



2p  is the magnetic Prandtl number. 

Here we consider the case where both the boundaries are free 

as well as perfect conductors of heat, while the adjoining 

medium is also perfectly conducting.  The case of two free 

boundaries is slightly artificial, except in stellar atmospheres 

and in certain geophysical situations where it is most 

appropriate [17].  However, the case of two free boundaries 

allows us to obtain analytical solution without affecting the 

essential features of the problem.  The appropriate boundary 

conditions, with respect to which equations (20) - (24) must 

be solved, are 

0,0,1and00,0,02  KDXzzatDZWDW

 on a perfectly conducting boundary.                                   (25) 

 

Using the above boundary conditions, it can be shown that all 

the even order derivatives of W must vanish for z = 0 and z = 

1, and hence the proper solution of W characterizing the 

lowest mode is 

zWW sin0 ,                                                                         (26) 

where W0  is a constant. 

Eliminating XZK and,,  between equations (20) - (24) and 

substituting relation (26) in the resultant equation, we obtain 

the dispersion relation 
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5. Important Theorems and Discussion 
 

Theorem 1: For stationary convection case: 

(I) The viscoelasticity parameter F vanishes with  and 

Walters B' viscoelastic fluid behaves like an ordinary 

Newtonian fluid. 

(II)  Rotation postpones the onset of convection i.e. rotation 

has a stabilizing effect on the system. 

(III The magnetic field has both stabilizing and destabilizing 

effects on the system. 

Proof: When the instability sets in as stationary convection, 

the marginal state will be characterized by 0 . Putting

0 , the dispersion relation (27) reduces to 
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To investigate the effects of rotation and magnetic field, we 

examine the behavior of  
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which is always positive. The rotation, therefore, has a 

stabilizing effect on the system for the case of stationary 

convection.     

(III) It is also evident from equation (28) that 
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It is clear from equation (30) that, for stationary convection, 

1

1

dQ

dR
 may be positive as well as negative, thus, the magnetic 

field has both stabilizing and destabilizing effects on the 

system. 

Theorem 2: The system is stable or unstable. 

Proof: Multiplying equation (20) by W*, the complex 

conjugate of W, integrating the resulting equation over the 

range of z and using equations (21) - (24) together with the 

boundary conditions (25), we obtain  
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(32) 

and * is the complex conjugate of .  The integrals 

I1,……….,I10 are all positive definite.  Putting  = r + ii , 
where r, i are real and equating the real and imaginary parts 

of equation (31), we obtain 
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(34) 

It is evident from equation (33) that r is either positive or 

negative. The system is, therefore, stable or unstable.  

Theorem 3: The modes may be either oscillatory or non-

oscillatory in contrast to the non-magneto-rotatory case.   

Proof: Equation (34) yields that i may be either zero or non-

zero, which means that the modes may be either non-

oscillatory or oscillatory. In the absence of rotation and 

magnetic field, equation (34) reduces to 
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and the terms in brackets are positive definite.  Thus, i = 0 , 

which means that oscillatory modes are not allowed and the 

principle of exchange of stabilities is satisfied for Walters B   
viscoelastic fluid heated from below. Thus, rotation, magnetic 

field and viscoelasticity introduce oscillatory modes (as i 

may not be zero) in the system which was non-existent in 

their absence. 
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Theorem 4: The system is stable for 
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the system becomes unstable. 

Proof:  From equation (34), it is clear that i  is zero when the 

quantity multiplying it is not zero and arbitrary when this 

quantity is zero. 

If 0i , then equation (34) gives 
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                                                                                                    (35) 

Substituting in equation (33), we have 
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Equation (36) on using Rayleigh-Ritz inequality, gives 
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Therefore, it follows from equation (37) that 
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Now, let 0r , we necessarily have from equation (38), that 
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Hence, if          
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then 0r . Therefore, the system is stable. 

Therefore, under condition (40), the system is stable and 

under the conditions (39), the system becomes unstable.                            

 

6. Conclusions and Future Scope 
 

A layer of Newtonian fluid heated from below under varying 

assumptions of hydrodynamics in the presence and absence of 

rotation and magnetic field has been studied [1]. With the 

growing importance of viscoelastic fluids in chemical 

engineering, modern technology and industry, the 

investigations on such fluids are desirable. The Walters B' 

fluid is one such important viscoelastic fluid. Keeping in 

mind the importance of viscoelastic fluids, the present paper 

considering the effect of rotation on the Walters B’ 

viscoelastic fluid heated from below in the presence of a 

uniform vertical magnetic field.  

The main conclusions from the analysis of this paper are as 

follows: 

1. For the case of stationary convection the following 

observations are made: 

   a. The viscoelasticity parameter F vanishes with  and 

Walters B' viscoelastic fluid behaves like an ordinary 

Newtonian fluid. 

   b. The rotation postpones the onset of convection i.e. 

rotation has a stabilizing effect on the system. 

   c. The magnetic field has both stabilizing and 

       destabilizing effects on the system. 

2. It is found that rotation and magnetic field introduce 

oscillatory modes in the system which was non-existent in 

their absence. 

1.   It is observed that the system is stable for 
gακ

νβ
≤

(1 − 2σrF)
27π4

4
 and under the conditions  

gακ

νβ
> (1 − 2σrF)

27π4

4
  and        0 ≤ σr ≤

1

2F
, the system 

becomes unstable. 

2. However, further the study of stability, bifurcation, and 

pattern formation in thermal convection for viscoelastic fluids 

is an exciting area of research. Understanding these complex 

behaviors can have significant implications for natural 

convection, pattern formation in industrial flows, and 

optimizing heat exchange systems. Also the combination of 

Walter’s viscoelastic fluid with nanoparticles (nanofluids) 

could enhance heat transfer characteristics. Thermal 

convection analysis in these hybrid fluids can lead to the 

design of high-performance cooling systems for electronics 

and advanced engineering applications.  
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