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Abstract-Quantum phase parameters have been studied in Multi-wave mixing using Barnett-Pegg formalism. It is 

shown that reduction of Carruther and Nieto symmetric quantum phase fluctuation parameter U with respect to its 

coherent state value corresponds to an antibunched state and thus phase fluctuation parameter can be used as a measure 

of nonclassicality of a state. Further we have compared the measured values of Carruther and Nieto quantum phase 

parameters U, Q and S and found the reduction of U in five waves mixing optical process directly relates to 

antibunching. 
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I. INTRODUCTION 

 

Squeezing and antibunching have no classical counterpart and are called non-classical states. Antibunching or Sub-poissonian 

light has a narrower photon number distribution than for Poissonian statistics. The „Hermitian quantum phase operators‟ have 

some ambivalence [1-3] which leads to lot of unalike formalisms [4-6] of phase problem. Out of these formalism Susskind-

Glogower (SG) [4] and Barnett-Pegg (BP) [5] formalism played major part in phase fluctuation. Use of the measured phase 

operators of BP formalism provides easier calculations than SG formalism. Phase operators in various non linear processes 

have been studied using SG formalism [7-11] as well as BP formalism [12-16]. Carruther and Nieto [11] introduced symmetric 

quantum phase parameters to study phase fluctuation. With the observation of quantum phase fluctuation in quantum 

computation [17,18], super-conductivity [19] and photon added coherent state [20], there has been an increase in the study of 

quantum phase parameters.                                                                                 

 

In the present work Barnett-Pegg (BP) [5] formalism has been applied to study quantum phase operators in multiwave mixing 

using Carruther and Nieto phase parameters. In section II and III we briefly explain phase fluctuation parameters U, S and Q 

and presented short time approximated operator solution upto second order of five wave mixing optical process with physical 

meaning of U parameter. Finally section IV is dedicated to conclusion. 

 

II. MEASUREMENT OF QUANTUM PHASE FLUCTUATION PARAMETERS 

 

Barnett and Pegg [5] defined the exponential of phase operator E and its Hermitian conjugate 
†E as 
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Where N is the mean photon number in the coherent state.  

http://www.isroset.org/


Int. J. Sci. Res. in Physics and Applied Sciences                                                         Vol.7 (4), Aug 2019, E-ISSN: 2348-3423 

  © 2019, IJSRPAS All Rights Reserved                                                                                                                                    34 

Sine and cosine operators are defined as [5] 
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And satisfy the following relations 
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To measure quantum phase fluctuation, Carruthers and Nieto [11] had introduced U, S and Q parameters in the 

following way: 

       
2 2 22 2 2

, , [ ] / [ ]U t N S C S C       
                                                                        (6) 

   
2 2 2

( , , )S t N S    
                                                                                                                      (7)

 

And  
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Where   is the phase of input coherent state   , t is the interaction time and 
2

  is average photon number in 

coherent state. 

 

III. QUANTUM PHASE IN FIVE WAVE INTERACTION PROCESS 

 

The Hamiltonian for five wave interaction process involving two pump photons of frequency 1  
and emitted photons 

of frequency 2  and 3  is given as 

 2 2 2 2

1 2 3H a a b b c c g a b c a b c           
                                                                   

(9) 

Where g is a coupling constant,  †a a ,  †b b
 

and  †c c  are creation (annihilation) operators, respectively. 

1expA a i t , 2expB b i t , 3expC c i t  are operators at frequencies 1 , 2  and 3  
respectively. 

To study quantum phase fluctuation a coherent state   is used as pump for mode A and before the interaction process 

there was no photon in signal mode B and stokes mode C i.e 

 0 0
A B C

                                                                                                                                                                                      

The Heisenberg equation of motion for fundamental mode A   is given as  1  

 ,
dA A

i H A
dt t


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(10) 

Now using Taylor‟s series expansion and short time approximation,  A t   can be expressed as  
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Where 
†

BN B B and 
†

CN C C . 

From equation (11) average number of photons can be expressed as   
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(12) 

The expectation value of ( )N t is 
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Using equation (14) and (15), we obtain 
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Condition of sub-Poissonian photon statistics is given as 
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Using (13) and (16), we get 
42 212d g t                                                                                                                                         (18) 

We are getting negative value which shows that that photon statistics is sub -Poissonian or antibunched light. 

By substituting (11) in (2), we obtain 
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The expectation value of C and S operators of equation (19) and (20) are 
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Then square of expectation value of C and S are  
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Using equations (23)-(26), second order variances is expressed as  
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Now equations (6)-(8) can be expressed as  
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Figure 1. Variation of parameter U with N in five wave mixing process  (taking 
2 2 410g t  and 0  for maximum 

squeezing) 
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Figure 2.  Variation of parameter S with N in five wave mixing process  (taking 
2 2 410g t  and 0  for maximum 

squeezing) 
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Figure 3.  Variation of parameter Q with N in five wave mixing process (taking 
2 2 410g t  and 0  for maximum 

squeezing) 
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Thus from (18) and (29) it is clear that decrease in the value of phase parameter U with increase in number of photons 

in coherent state with respect to its Poissonian state value leads to antibunching phenomenon [21]. Now 1/ 2
O

U  , 

2 2 1
1/ 4 ( 1/ 2)

O
S   

   and 1/ 2cos2OQ   are the initial values of measured phase operators and gives 

information about phase of the input coherent light.   

 

IV. CONCLUSION AND FUTURE SCOPE 
 

The results obtained for symmetric uncertainty product U from (29) clearly shows the decrease in value of parameter U 

with respect to its classical (Poissonian) state value as we increase the initial photon number
2

  It is also shown that 

the parameter U is independent of   while S and Q parameters can be tuned by varying the values of time of 

interaction t and phase of the input coherent state . Hence the present work directly relates the reduced value of 

measured phase parameter U with antibunching (Sub-Poissonian). Thus we can conclude that reduction of phase 

fluctuation parameters increases with increasing non-classicality of the system and it can be used as a criterion for 

single photon source that is the primary requirement for  quantum information processing [22].   
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