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Abstract— This article introduces a model employing fractional-order time derivatives to describe magneto-hydrodynamic 

blood flow in bifurcated arteries subjected to an inclined magnetic field. It also considers thermal radiation, heat source effects, 

and chemical reactions relevant to tumor treatments. The Caputo-Fabrizio fractional derivative framework is utilized, and the 

problem is tackled using Laplace transform and the method of indeterminate coefficients. Analytical expressions for blood flow 

velocity, temperature, and concentration are derived. Graphical simulations are performed to investigate the impacts of various 

parameters, such as the order of Caputo-Fabrizio fractional derivative, magnetic field strength, thermal radiation, chemical 

reaction rate, heat source intensity, and Schmidt number. The results highlight the significant influence of the fractional order 

parameter on blood velocity, temperature, and concentration, particularly in shorter time frames. Moreover, parameters like 

inclined magnetic field, heat source, and chemical reaction rates are shown to exert considerable control over arterial wall blood 

velocity, temperature, and concentration. These findings have important implications for biomedical engineering and pathology 

applications. 
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1. Introduction 
 

The investigation of bio-fluid motion, especially blood flow 

affected by magnetic fields, is attracting attention in fluid 

mechanics, within the realm of bio-magnetic fluid dynamics 

(BFD). This area holds significant importance in medical 

sciences, including applications such as drug delivery using 

magnetic particles, homeostasis, and cancer tumor treatment. 

Blood, considered a bio-magnetic fluid, displays magnetic 

properties due to its haemoglobin molecules [1,2,3]. For 

example, [4] studied magneto-hydrodynamic flow and heat 

transfer in an overlapping constricted artery under periodic 

body acceleration and temperature-dependent viscosity. 

Several studies [5,6,7,8,9,10] have characterized blood as a 

non-Newtonian fluid, demonstrating magneto-hydrodynamic 

(MHD) characteristics due to its electrical conductivity. [11] 

investigated MHD flow and heat transfer in a narrowed 

artery, while [12] analyzed ferromagnetic blood flow through 

a narrowed artery with a permeable wall. The concept of 

fractional-order derivatives, initially introduced by Leibniz in 

1832, has found applications in various research areas, 

particularly in understanding the rheological properties and 

complex dynamics of diverse fluids [13,14,15,16,17,18,19]. 

Blood's behavior varies; it may adhere to Newtonian fluid 

dynamics in large arteries under high shear rates, but even in 

such scenarios, it exhibits non-Newtonian behavior, as noted 

by [20]. 

 

At low shear rates, blood demonstrates behavior similar to 

that of a Casson fluid [21], as affirmed by multiple 

researchers [22,23,24]. [25] proposed a fractional-order model 

for Casson fluid blood flow, employing Hankel transform and 

Laplace transform techniques for precise solutions, while [26] 

developed a mathematical model for MHD blood flow in a 

tube containing dusty magnetite particles, utilizing the 

fractional Caputo time derivative. [27,28] respectively 

examined oxygen diffusion dynamics at the tissue capillary 

level and the intricacies of blood vessel responses under 

various forces using Caputo-Liouville and Caputo-Fabrizio 

fractional-order models. However, to the best of our 

knowledge, no prior efforts have been made to investigate a 

fractional-order time-derivative model of 

magnetohydrodynamic (MHD) blood flow through permeable 

bifurcated arteries with an inclined magnetic field, 

incorporating heat and mass transfer phenomena alongside 

thermal radiation. The study of blood flow through porous 
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media holds significance in biofluid dynamics. Examples 

include the capillary endothelium surrounded by alveoli and 

the presence of fatty plaques within arterial lumen segments, 

both considered porous media. The permeability of a porous 

medium, indicating flow conductivity, is a defining 

characteristic. Various researchers have explored the 

movement of physiological fluids through porous media 

under diverse conditions. [29,30] developed models for blood 

flow through porous media using the Brinkman equation, 

while [31] applied Darcy's law to depict blood as the liquid in 

the porous medium. Additionally, [32] introduced a 

mathematical model to investigate blood flow, heat, and mass 

transfer within a porous medium channel, utilizing the 

combined Darcy-Brinkman-Forchheimer model. 

 

2. Related Work  
 

In hyperthermia therapy, the transfer of radiant heat within 

blood vessels is critically significant, especially in oncology. 

Several studies have computationally evaluated the influence 

of magnetic fields and thermal radiation on arterial blood 

flow. Additionally, investigations have explored 

electromagnetohydrodynamic effects and the combined 

impacts of external radiation and magnetic fields on blood 

flow in large vessels. Furthermore, research has delved into 

heat transfer processes in second-class MHD fluids and the 

peristaltic motion of blood containing particle-liquid 

suspensions with variable viscosity [33,34,35]. The 

vibrational environment profoundly affects blood flow, with 

body acceleration leading to various health concerns. 

Mathematical models addressing oscillating blood flow under 

body acceleration have been examined, alongside hydro 

elastic single wave propagation in uniform flow channels 

[36,37]. Moreover, studies have investigated pulsatile blood 

flow through narrowed arteries under the joint influence of an 

external magnetic field and periodic body acceleration. MHD 

flow holds significant importance in medical applications, 

particularly in tumor treatment and the mitigation of bleeding 

from injuries [38,39,40]. Analytical solutions have been 

derived for non-Newtonian MHD nanofluids with 

temperature-dependent viscosity, as well as for peristaltic 

flow and heat transfer of nanofluids. Models incorporating 

fractional blood flow in oscillatory arteries along with thermal 

radiation have also been developed. Investigations have 

explored the effects of Caputo's time-fractionated derivatives 

and external magnetic fields on blood flow parameters in 

cylindrical domains [41,42]. 

 

In this investigation, we employ a Newtonian fluid approach 

to characterize the fractional-order time derivative governing 

magnetohydrodynamic (MHD) blood flow through bifurcated 

arteries in the presence of an inclined magnetic field, while 

simultaneously considering the coupled influences of heat 

transfer and blood flow concentration. Building upon existing 

literature, we develop a comprehensive time-sharing model 

with the aim of understanding the impact of heat and mass 

transfer on MHD blood flow through bifurcated arteries under 

an inclined magnetic field, particularly in the context of tumor 

treatment. Additionally, the blood flow encounters exposure 

to a magnetic field. We utilize the indeterminate coefficient 

method and Laplace transform techniques to derive the exact 

solution. The study's findings are succinctly illustrated 

through various graphical representations, delineating the 

effects of the different parameters under consideration. 

Top of Form 

 

3. Methodology 
 

From a numerical perspective, the following assumptions are 

made: Blood is characterized as a Newtonian, compressible, 

homogeneous fluid with adhesive properties, flowing through 

a non-directing, equal plate channel from the trunk to the 

branches. The mass flow rate at any cross-sectional area 

perpendicular to the flow direction is given by m=2bv, where 

v represents the mean velocity of the flow, b denotes the 

width of the channel, and ρ signifies the density of blood. The 

bifurcating partition does not affect the velocity of the mass 

flow at any cross-section of the expanded channel, which 

remains equal to m/2 (refer to Fig 1). Due to the low magnetic 

Reynolds number considered, the magnetic field is applied at 

an angle to the flow direction. Consequently, it is assumed 

that the induced magnetic field and electric field generated by 

the blood flow are negligible. Since the bifurcation angle is 

zero, the blood flow region is divided into two streams that 

run parallel to the major artery. 

 

 
Fig.1. Physical Flow Geometry 

 

Basic flow Equations and solutions 

Blood flows through a permeable medium as two boundary 

layers under the influence of a magnetic field, with heat 

transfer occurring in accordance with the assumptions 

outlined in the numerical formulation. Let u and v represent 

the velocity components in the x and y directions of the flow 

field at time t, and δ denotes the thickness and viscosity of the 

blood, while p represents the blood pressure. Additionally, 

KT denotes thermal conductivity, Cp signifies the specific 

heat capacity at constant pressure, Q represents the amount of 

heat, T signifies the temperature, β represents the volumetric 

expansion coefficient, θ represents temperature distribution, θ 

signifies the angle of inclination of the applied magnetic field, 

and K represents the porosity parameter. 
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where,  

t



is the material time derivative. However, for the delivery 

of drugs (concentration) in magnetohydrodynamic blood flow 

through permeable bifurcated arteries, the concentration 

equation in dimensionless form is provided as follows:
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where  

)(1  CCkG  is any constant (G = 1) and D is the 

diffusion coefficient.  
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The governing equations (1) to (4) can be converted into 

dimensionless form by employing suitable normalization 

parameters. Thus, we introduce non-dimensional parameters 

to simplify our study, which are: 
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The magnetic field parameter, Prandtl number, thermal 

radiation parameter, heat source parameter, Schmidt number, 

and chemical reaction parameter will be examined 

accordingly. Consequently, we will address the time 

fractional momentum equations, utilizing the Caputo-Fabrizio 

fractional derivative. 
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Now the fractional differential equation with Caputo-Fabrizio 

derivative corresponding to equations (7), (8) and (10) are: 
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Applying Laplace transform to equations (13) to (15), and 

using the boundary condition (12): 
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4. Analytical solutions 
 

Let the arbitrary solutions of equations (9), (16), (17) and (18) 

be, 
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 then the boundary conditions in (5) reduce to; 
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Equation (24) to (27) are solved with boundary conditions in 

equation (23), the obtained solutions are: 
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Blood velocity in the axial direction, using equation (30) with 

equation (19) is given by 
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Blood velocity in the normal direction to the bifurcated artery, 

using equation (26) with equation (21) is given by 
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Temperature distribution in the bifurcated arteries is given by 

equation (28) with (20): 
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The flowing blood in the carotid artery caries drug as 

concentration is given by equation (22) with (29): 
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Equations (31) to (34) are subjected to inverse Laplace 

transform, employing Gerby-Stephan's Algorithm. The 

obtained results are then visualized through graphical 

simulations using MATHCAD software, as presented and 

elaborated upon in the subsequent section. 

 

5. Results and Discussion 
 

We employed MATHCAD software to analysed flow data 

extracted from numerical results obtained via analytical 

solutions (31), (33), and (34). Graphical representations are 

provided for fractional parameters, velocity, temperature, and 

blood concentration. The impact of various dimensionless 

parameters, including magnetic field parameters (M), 

radiation number (R), fractional parameters (α), heat source 

parameters (S), Schmidt number (Sc), among others, on fluid 

velocity, temperature, and concentration were investigated. 

The magnetic field consistently showed a greater influence on 

the velocity profile, primarily due to its application increasing 

the resistive force, known as the Lorentz force, thereby 

constraining fluid flow within the system. Figure 2 illustrates 

this effect. Blood velocity significantly decreased with 

increasing values of the magnetic field parameter for 

fractional orders (α=0.4) while decreasing slowly for integer 

orders (α=1). Consequently, controlled magnetic fields hold 

promise for therapeutic applications and treatments related to 

conditions such as atherosclerosis, bone fractures, controlled 

tissue damage, and cancer [42]. 

 

Figure 3 demonstrates the change in blood velocity at 

different values of the heat source parameter (S) for both 

fractional and classical blood flow. Blood velocity is observed 

to increase as the heat source increases and is minimal for 

fractional fluids (α=0.4). However, axial velocity increases 

symmetrically with an increase in the heat source parameter. 

Figure 4 illustrates the velocity distribution at different 

thermal radiation parameters (R). Blood velocity increases 

with increasing radiation parameter (R) for both fractional 

and classical orders, aligning with observations in Newtonian 

fluid models. Thermal radiation indirectly affects the velocity 

profile by influencing the effective viscosity of fluids. 

 



Int. J. Sci. Res. in Physics and Applied Sciences                                                                                     Vol.12, Issue.2, Apr. 2024   

© 2024, IJSRPAS All Rights Reserved                                                                                                                                          59 

Figure 5 shows the effect of applied magnetic field 

parameters for different tilt values. Increasing the angle of 

inclination of the applied magnetic field decreases blood flow 

for both fractionated and classical fluids across the affected 

area. Notably, flow velocity disappears between angles of 80° 

to 85° for fractionated fluids. 

 

Figure 6 depicts the blood flow velocity profile at four 

different times (t=0.01 and 0.5) with five different values of 

fractional parameters α=0.2,0.4,0.6,0.8, and 1). The fractional 

parameter (α) plays a pivotal role in controlling blood 

velocity. At initial stages (t = 0.01), fluids with fractional 

derivatives exhibit faster flow velocities compared to integer 

order fluid models. However, an opposite trend is observed 

for longer periods (t = 0.5), where the velocity of integer 

order fluids surpasses that of fractional order fluids. This 

phenomenon is attributed to the system's stability, which 

tends to increase over longer time periods. Generally, blood 

velocity increases with increasing time for both fractional and 

integer order fluid models. 

      

  

 
(2a) 

    (2b) 
Fig.2: Axial velocity profile for Different values of Magnetic 

Parameter (a) 4.0 (b) 1  
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Fig.3 Axial velocity profile for Different values of Heat 

Source Parameter (a) 4.0 (b) 1  
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(4b) 

Fig.4: Axial velocity profile for Different values of Radiation 

Parameter (a) 4.0 (b) 1  
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(5b) 

Fig.5 Axial velocity profile for Different values of Angles of 

Inclination of Magnetic Field 
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Fig.6 Axial velocity profile for Different values  at (a) 01.0t   
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Figures (7) to (9) depict temperature profiles for various 

values of the radiation parameter (R), fractional parameter 

(α), and heat source parameter (S). Figure 7 showcases the 

temperature variation for different radiation parameters (R). It 

is clear that temperature magnitude increases with higher 

levels of thermal radiation for both fractional and integer 

order derivatives. Particularly, temperatures are elevated 

along the centre line for integer order derivatives, a 

distribution pattern crucial for hyperthermia. Hyperthermia, 

characterized by the body's inability to regulate temperature, 

occurs when the body absorbs heat from external sources or 

experiences temperature dysregulation. In hyperthermia, 
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blood internal temperature rises without affecting the 

surrounding tissue of the blood vessel. Therefore, in our 

model, we neglect temperature exchange at the artery wall, 

setting the wall temperature to zero. Consequently, in the 

present model, blood temperature is minimal at the arterial 

wall and higher at the midline for classical fluids. This 

phenomenon aligns with findings from theoretical and 

experimental studies on non-Newtonian and Newtonian fluids 

of integer order. Another influential parameter similar to 

radiation is the heat source (S), significantly affecting 

temperature distribution within the bloodstream. Figure 8 

demonstrates the thermal effects associated with heat 

production processes influenced by a higher number of 

mitochondria per cell, resulting in increased heat production 

within the system. It is observed that blood vessel temperature 

is lower in the absence of a heat source, while the addition of 

a heat source elevates temperature distribution within the 

blood flow system, maintaining a zero-wall temperature 

according to boundary conditions. The temperature 

distribution is notably affected by variations in the fractional 

parameter, as depicted in Figure 9. Here, it is evident that 

temperature increases with higher fractional parameter values, 

indicating that temperature distribution for fractional order 

fluid models is consistently higher across various instances. 
 

(7a) 

 
(7b) 

Fig.7 Temperature profile for Different values of Radiation 
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Fig.8. Temperature profile for Different values of Heat Source 
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(9b) 

Fig.9: Temperature profile for Different values of  at (a) 

05.0t   (b) 25.0t  
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Figures 10 to 12 depict concentration profiles for varying 

Schmidt numbers, chemical reaction rates, and fractional 

parameters. Blood concentration denotes the density of blood 

cells suspended in plasma, with red blood cells (RBCs) being 

particularly influential due to their size and density. Due to 

their rotational behavior, RBCs tend to aggregate near the 

central area of the vessel, resulting in higher solute 

concentrations. In contrast, the off-axis region, primarily 

comprising plasma, exhibits minimal solute concentration. 

This concentration distribution pattern is consistently 

observed across all concentration plots. Importantly, the 

fractional model fluid demonstrates higher concentrations 

than the integer order fluid within shorter time intervals, as 

shown in Figure 10. This difference arises from the presence 

of fractional order derivatives in the model, which restrict 

fluid flow. Conversely, an opposite trend is noted for the 

Schmidt number. The inclusion of the Schmidt number 

introduces an additional force due to temperature gradients in 

blood cells, thereby augmenting concentration, as depicted in 

Figure 11. The concentration amplitude of blood flow is 

higher for integer order derivatives. Chemical reaction 

parameters for both fractional and integer derivatives notably 

reduce solute concentration, with this effect particularly 

prominent along the flow axis (x) and gradually diminishing 

in the (y) region for both fractional and integer order 

derivatives. 
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Fig.10: Concentration profile for Different values of  at (a) 

1.0t (b) 5.0t  
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(11b) 

Fig.11. Concentration profile for Different values of Schmidt 
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Fig.12: Concentration profile for Different values of Schmidt 
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,5.0,30,5.0,5.0,1

,5.0,2,2,1,5.0

0 



Rht

MKPSSc r


 

 

6. Conclusion  
 

The main objective of this mathematical analysis is to develop 

a fractional-order model that describes magnetohydrodynamic 

blood flow through bifurcated arteries in the presence of an 

inclined magnetic field, thermal radiation, and heat source, 

particularly focusing on applications in tumor treatments. The 

solution to this mathematical model is achieved through a 

combination of Laplace transform and the undetermined 

coefficient method, utilizing the specified constraint 

transformations. Notably, the distributions of velocity, 

temperature, and concentration are significantly influenced by 

the fractional order parameter. Initially, the flow modelled 

with fractional order exhibits higher velocities compared to 

integer order fluid flow. However, as dimensionless time 

progresses, fractional fluid flow slows down relative to 

integer-order fluid flow. The impact of fluid velocity is 

particularly noticeable in the slower rate of increase in fluid 

velocity with higher values of the magnetic field parameter. 

Furthermore, blood flow concentration decreases with 

increasing chemical reaction parameters, while an increase in 

the Schmidt number results in higher blood concentration. 

The dimensionless temperature of blood flow rises with 

increasing values of the fractional parameter and the heat 

source, which also affects the radiation parameter similarly. 

Understanding and analyzing these results are crucial in the 

context of hyperthermia treatment for cancer therapy, and 

they may offer insights into concentration phenomena of drug 

particles for drug delivery applications. 
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