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Abstract— A microscopic theoretical approach is employed to calculate the detailed dynamical structure factors of an 

interacting fluid of potassium atoms at its melting temperature. The theoretical investigation is carried out at 338 K, where 0.845 

grams of the interacting particles occupy one cubic centimetres of the fluid. The calculations are performed over a range of κ 

(wave vector): 0.3 Å
-1

 to 3.0 Å
-1

. This theoretical approach utilizes the inter-particle interactions present among the constituent 

particles of the liquid to calculate various dynamical quantities including the dynamical structure factor and the current-current 

correlation function. The predicted dynamical functions in turn allow for the determination of key transport properties; diffusion 

coefficient, and longitudinal viscosity and other significant properties, such as collective mode frequencies and the sound 

velocity. These properties are reported for the entire κ–range. The modified microscopic theory, therefore, is emerged as an 

inclusive method, for calculating the complete dynamics of liquid potassium at the melting temperature by incorporating inter-

particle interactions. 
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1. Introduction  

Various theories [1-4] describing the complicated dynamics 

of the interacting fluids, have been proposed wherein the 

degree of correlations among its particles can range from 

strongly to weakly correlate and are characterized by the 

presence of single and collective particle motion. At the same 

time, there are various theories to [5,6] explain transport 

phenomena and to quantitatively determine transport 

coefficients such as diffusion coefficient in liquids and gases. 

However, these coefficients are rarely gauged in terms of the 

interactions and correlations present between the particles of 

a fluid. Such an endeavour has been made in this current 

study by applying the modified microscopic theory for the 

purpose of describing the complete dynamics along with one 

of the transport coefficients, the diffusion coefficient of liquid 

potassium at 338K, just at its melting point (336 K). The 

computations have been performed for a wider wave vector 

range of 0.3 Å
-1

 ≤ κ ≤ 3.0 Å
-1

.  The fluid under investigation 

is a system of moving potassium atoms of approximately 1.27 

× 10²² particles present per cubic centimetre. This is apparent 

to understand that constituent particles of liquid potassium 

(K) at the melting temperature are interacting with high 

energy. This makes the fluid potassium to be a vastly 

interactive and strongly correlated system. Therefore, 

application of the modified microscopic theory of such a 

classical fluid system to describe its dynamics, is well-

founded. 

 

Studying the collective dynamics of fluids has always been a 

challenging task. A theorist may need pure coherent 

scattering cross sections measured from experiments to 

successfully validate their outcomes. Experimental methods, 

on the other hand, such as inelastic X-ray scattering and 

thermal neutron inelastic scattering, are generally used to 

study the communal motions of interacting particles but are 

subject to definite restrictions. The previously used method of 

scattering by neutrons (INS) results in a mixture of cross-

sections from incoherent scattering and coherent scattering in 

nearly equivalent amounts [7, 8], making it tough to extract 

the coherent structural information from the spectra. From the 

inelastic scattering of X-rays, in contrast, when conducted at 

the high-resolution synchrotron radiation sources [9], can 

provide data which is purely coherent. Recent experimental 

IXS coherent spectral line shape data for liquid potassium at 

343 K, within a wave vector range of 0.9–17.0 nm⁻¹, has been 

reported by Monaco et al. [10].  The temperature for this 
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study from scattering of X-rays is, however, above the 

melting temperature. The coherent spectral line-shapes for 

liquid potassium at the melting temperature have not been 

reported by the IXS experiment, and hence, this necessitates 

the theoretical evaluation for the detailed dynamical 

structures to explore the complete dynamics of given fluid, 

liquid potassium. 

 

This paper is structured into five different sectors: including, 

Introduction, Related work, Mathematical Formalism, Results 

and Discussion, and Conclusion. In the first section a layout 

of introduction to the research problem and literature review 

has been provided. In section II outlines the basic 

propositions and related theoretical framework employed in 

this study. Layout of mathematical formalism containing 

mathematical expressions for various physical quantities in 

relation to the present microscopic theory are presented in 

section III. In section IV presentation of computed results in 

the case of fluid under study has been made and is followed 

by an in-depth discussion. Finally, Section V summarizes the 

conclusions derived from the theoretical outcomes. 

 

2. Related Work  

In the present work, the entire dynamics of liquid potassium 

along with the dynamical structure factor are deduced from 

an approach that relies on the microscopic dynamics of the 

liquid. By employing apt averages over time spans of the 

solved classical equations of motion of moving particles, the 

current theory examines the reaction of an interacting, 

correlated fluid to invading radiation (X-rays or neutrons) 

[11] and hence, exhibit time-related disorders. The well-

known, Fluctuation-Dissipation Theorem establishes a 

connection of the imaginary part of the complex function 

obtained from the density response function when Fourier 

transformed in space and time, to the dynamical structure 

factor. Though the motion of distinct particles is correlated, 

these correlations were neglected in the previous microscopic 

theory [11]. Such correlations are incorporated into the 

present form of the theory by defining the characteristic 

relaxation time [12], which is further influenced by various 

substantial properties of the system, including the static 

structure factor, diffusion coefficient, interaction potential, 

mass, temperature and density.  

 

In this theoretical approach, the diffusion coefficient is 

acquiring a specific value for a given wave vector. The theory 

is further modified by making diffusion coefficient frequency 

dependant so as to obtain agreement to experimental values 

leading to realistic description of the intermediate scattering 

function without entertaining arbitrary parameters. 

 

Collective dynamics of a number of liquids has been 

explained previously applying this form of modified 

microscopic theory [13-17]. In the present work, this 

approach is implemented for the determination of the 

collective dynamics of liquid potassium. 

 

3. Mathematical Formalism 

As described in the prior section, connection between the 

dynamical structure factor and the imaginary part of the 

Fourier transform of the density-2 response function is 

established through the Fluctuation-Dissipation Theorem and 

is given as: 
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Here, ),( 


 is a complex function obtained when the 

density-2 response function is Fourier transformed and 

),( 


  is the imaginary part of the ),( 


. T, here, is the 

temperature, and ρo denotes the number density of particles. 

 

The density-2 response function characterizes the behaviour 

of a liquid when subjected to a weak external probe, causing 

space-time dependent fluctuations in the equilibrium density. 

Microscopic theory provides a method to derive this function 

),( 


by solving the micro-dynamics of the liquid. The 

trajectories of moving particles are obtained by solving the 

classical equations of motion, and their history averages lead 

to the calculation of complex space-time dependent 

correlation functions. In earlier microscopic theories, time-

dependent correlations were ignored, resulting in dynamical 

structure factors that deviated significantly from 

experimentally observed spectral line shapes. To address this, 

a characteristic relaxation time was introduced to satisfy the 

zeroth sum rule. Applying this modified microscopic theory 

yielded significantly improved results for the dynamical 

structure factors of various liquids [18-22]. 

 

The dynamical structure factor in this form of theory acquires 

the following form: 
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Here, in the expression (1), β’’ = Deff κ
2
, Deff is diffusion 

coefficient turns to be frequency dependant. 

 β=(kBT)
-1 

and, ϒ = τ(κ)
-1

,  

The relaxation time τ(κ)
-
is defined as follows: 
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Here,   = D
2 , with D being κ-dependant diffusion 

coefficient. 

m is the atomic mass and  S  is the static structure 

factor. 

 S can be obtained from the Fourier transform of the 

static pair correlation function,  g r  from the following 

expression: 
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Where, E , is the elastic frequency  given as follows: 
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Here,  rV  is the inter-atomic potential. 

0r  occurred in the expression (4) is obtained on applying 

following approximation:  
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              (6) 

The peak of the delta function is r = 0r  and z is the space 

coordinate. 

 

 is the current-current correlation function and  is 

given by the following expression: 

    

                     (7) 

 

4. Results and Discussion 

As is discussed in the preceding section, the determination of 

the detailed dynamical structure factors requires the 

entailment primarily of the inter-particle interaction potential 

and also the pair distribution function, g(r). The framework of 

microscopic theory evolves from the interaction potential 

with which the particles of given fluid interact. For the 

current work, the interaction potential for liquid potassium 

proposed by J.M.G. Miranda [23] has been used. While 

carrying molecular dynamics, four different potential forms 

for liquid potassium, evolved from the pseudopotential by 

Ashcroft and also dielectric function, have been considered. 

The first form of interaction potential is devoid of usual Born-

Mayer term for interaction at the given temperature 

potentials, whereas the other two forms have included the BM 

term with the effective ionic radii to evolve the dynamical 

properties. The fourth proposed form of interaction potential 

focused on the agreement between experimental and 

calculated results and is the one that has been observed to 

accentuate on the coupling of the longitudinal modes due to 

the softening of the repulsive core, when the Born-Mayer 

term is incorporated in. This form of interaction potential, 

which has successfully regenerated the static structure factor 

for liquid potassium reported from X-ray diffraction study 

[24] and hence, has been chosen here for further 

computations. Another noticeable form of inter-particle 

interaction potential for the fluid, reported by Brettonet and 

Jakse [25], has also been observed to yield the static structure 

factor and hence, the static pair correlation function with 

accordance to the experimentally measured static structure 

factor, by Hujiben et al. [26]. However, the former appears to 

be in a better agreement to X-ray diffraction study and, hence, 

has been implied in the current work out.  

 

On substituting the empirical form of this interaction 

potential, along with the static pair correlation function 

g(r), in expression (5), Einstein frequency,
E , has been 

evaluated. From the expression (6) the peak position of the 

delta function, ro has been calculated. These two entities 
E  

and ro for liquid K at 338 K turns out to be 1.342 × 10¹
3
 s⁻¹ 

and 4.4 Å, respectively, and on substituting into expression 

(4) yielded κ-dependant frequency, ωκ. The static pair 

correlation used here is that obtained from the experimental 

static structure factor (expression (3)), when Fourier 

transformed. The values for these quantities have been further 

used in the expression (2) for the computation of the 

relaxation time. This single characteristic relaxation time, 

τ(κ), is incorporated into the modified microscopic theory to 

account for the distinct particle correlations. It reflects the 

evolution with time of distinct properties, such as particle 

positions or densities. In quintessence, the wave-vector 

dependent evolution of the system over a timescale to attain 

equilibrium after a perturbation is described.  

 

In expression (2), appeared a parameter, the diffusion 

coefficient, D which is included to ensure the fulfilment of 

the zeroth sum rule for a given wave-vector, κ. The zeroth 

sum rule serves as a normalization condition, ensuring that 

the dynamical structure factors are correctly formed across 

all ω ranges. The modified microscopic theory, therefore, 

adheres to all sum rules for liquids. With the relaxation 

time and diffusion coefficient, the detailed dynamical 

structure factors, S(\κ,ω), have then been calculated. The 

detailed structure factors describe the occurrence of 

fluctuations in space as well as over time and hence, can 
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provide essential insight into the dynamic conduct a 

system carries. They are deduced using expression (1), that 

links S(κ,ω) and τ(κ) through the diffusion coefficient, D. 
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Figure 1: Dynamical structure factor,  ,S   of liquid potassium 

at 338 K versus frequency, : (—●—) present theory at =0.3 Å-1 

, = 0.8 Å-1 , = 1.0 Å-1 and  =1.4 Å-1. 

 
The dynamical structure factors have been calculated for 

eight values of the wave-vector in the entire range of 0.3 

Å⁻¹ - 3.0 Å⁻¹. The obtained results that show the variation 

of the dynamical structure factors with frequency, ω, have 

been offered in Figure 1 for  = 0.3 Å
-1

;  = 0.8 Å
-1

;  = 

1.0 Å
-1

 and  =  
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Figure 2: Dynamical structure factor,  ,S   of liquid potassium 

at 338 K versus frequency, : (—●—) present theory at =1.65 

Å-1 , = 2.0 Å-1 , = 2.5 Å-1 and  =3.0 Å-1. 
 

1.4 Å
-1

: denoted by solid-circle curves (− ● −). Similar 

variation of dynamical structure factors have been shown 

in Figure 2 for  = 1.65 Å
-1

;  = 2.0 Å
-1

;  = 2.5 Å
-1

 and 

 = 3.0 Å
-1

: with solid-circle curves, (− ● −). In these 

calculations, the effective diffusion coefficient turns out to 

be κ-dependant as given in expression (2). As can be seen 

from the figures, at smaller values of wave-vectors, κ, up 

to κ= 1.0 Å⁻¹., the three peak structures along with the 

appearance of Brillouin peaks are exhibited. On increasing 

the wave-vector values, for κ > 1.0 Å⁻¹, much damper line 

shapes for the dynamical structure factors with the absence 

of the Brillouin peaks, are quoted. For the sake of 

comparison, the calculated data is compared with results 

from an IXS study for liquid potassium [10], though 

performed at an elevated temperature of 343 K, for two 

different values of wave-vector κ,  = 0.3 Å
-1

 and  = 1.0 

Å
-1

. The corresponding results from the experimental study 

(though at a different temperature) have been shown in 

Figure 3 with solid-square curves (−■−) and results from 

the present study have been drawn with a solid-circle 

curve (−●−), for both κ values. The comparison reveals 

that the structures obtained from IXS for the higher 

temperature at both wave vector values, have turned rather 

well defined, sharper and are recognised with prominent 

Brillouin peaks. Moreover, the peak positions have been 

appeared to shift towards the smaller frequencies. The 

difference in the outcomes from the two considerations can 

be accredited to the difference in temperatures.  
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Figure 3(a): Dynamical structure factor,  ,S    versus 

frequency, , of liquid potassium at 338 K at = 0.3 Å-1: (—●—) 

present theory; (—■—) experimental results (ref. [10]). 

Figure 3(b): Dynamical structure factor,  ,S    versus 

frequency, , of liquid potassium at 338 K at = 1.0 Å-1: (—●—) 

present theory; (—■—) experimental results (ref. [10]). 

 

The computed dynamical structure factors when entailed in 

the expression (7) now, to provide the single-peaked 

functions, the current-2 correlation functions. Figure 4 

displays the computed results of C(κ,ω) the current-2 

correlation function, derived from the dynamical structure 

factors using expression (7), for all wave-vector values. The 

variation of C(κ,ω) with ω has been shown with: (────) 

 = 0.3 Å
-1

; (- - - - -)  = 0.8 Å
-1

; (− ∙ − ∙ −)  = 1.0 Å
-1

; 
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(− ∙ ∙ − )  = 1.4 Å
-1

; (∙∙∙∙∙∙∙∙∙∙∙)  = 1.65 Å
-1

; (──×──)  = 

2.0 Å
-1

; (—▲—)  = 2.5 Å
-1

 and
 
(—∆—)  = 3.0 Å

-1
. The 

positions of the peaks of current-2 correlation functions 

correspond to the collective mode frequencies at a given 

value of κ. The collective mode frequency for a given wave 

vector, can also be depicted from the dynamical structure 

factors as the position of the Brillouin peaks in the detailed 

structures. 
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Figure 4: Variation of the Current-2 correlation functions, calculated from 
the dynamical structure factors of Fig. 1 and Fig. 2 for different values of 

wave –vector, with frequency ω:  (────) = 0.3 Å-1; (- - - - -)  = 0.8 

Å-1; (− ∙ − ∙ −) = 1.0 Å-1; (− ∙ ∙ − ) = 1.4 Å-1; (∙∙∙∙∙∙∙∙∙∙∙),  = 1.65 Å-1; 

(──×──) = 2.0 Å-1; (—▲—) = 2.5 Å-1 and (—∆—) = 3.0 Å-1. 

 

However, the wave vectors, specifically higher κ, for which 

dynamical structures are damped and side peaks are not 

visible, the collective modes can be quoted from the current-2 

correlation functions, at the position where peak of the 

function lies. 

 

The collective mode frequencies, ωp, deduced from the 

current-2 correlation functions, have been plotted in Figure 

5(a), as their variation against : with solid circles (-●-), ωp. 

The frequencies of collective excitations shown in figure 

5(a) correspond to the peak position of C(κ,ω) of figure 4 

and their variation with κ yields the dispersion relation for 

the liquid. As can be seen in the figure, the collective mode 

frequencies increase with an increase in the wave-vector to a 

maximum at nearly  = 0.8 Å
-1

 , decreases with the further 

increase in wave vector  up to a minimum at  =1.65 Å
-1

, 

wave-vector corresponding to peak position of the static 

structure factor and increases thereafter with further 

increase in the wave-vector, κ . A secondary peak at  = 

2.0 Å
-1

 has also appeared in the dispersion curve. This 

pattern reflects the characteristic drift for the variation of the 

dispersion relation. The theory incorporates correlations 

among different particles by defining characteristic relaxation 

time through the diffusion of moving particles. Hence, 

another significant dispersion curve, Dκ
2
 versus wave 

vector, κ, has been plotted in Figure 5(b) with a solid-

square curve (-■-). The figure exhibits the variation in the 

diffusive frequencies that emerged from the κ–dependent 

form of the diffusion coefficient, which has turned out to 

be an adjustable realistic parameter in the present form of 

theory. As is evident from the figure, when compared to 

time through the diffusion of moving particles. Hence, 

another significant dispersion curve, Dκ
2
 versus wave 

vector, κ, has been plotted in Figure 5(b) with a solid-

square curve (-■-). 
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Figure 5(a): p  versus k , for liquid Rb at 338 K: (—●—) 

deduced from the current correlation functions from present theory. 
Figure 5(b):  Variation of   Dκ2 with κ : (—■—),  present theory. 

 

The figure exhibits the variation in the diffusive 

frequencies that emerged from the κ–dependent form of 

the diffusion coefficient, which has turned out to be an 

adjustable realistic parameter in the present form of theory. 

As is evident from the figure, when compared to the other 

dispersion curve of fig 5(a), the two are in a synchronized 

pattern, except that the later curve is devoid of the 

secondary peak and rather keeps on increasing with 

increase in wave vector, for κ > 1.65 Å
-1

. Further, the 

diffusive frequencies are lower on scale when compared to 

the collective mode frequencies. 
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Figure 6: Velocity of sound in liquid potassium at 338 K versus, 

wave-vector,  : (▲) (as depicted from figure 5(a)). 
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Figure 6 presents the variation of κ–dependant form of the 

velocity of sound, c(κ), has been shown by solid triangles 

(▲), obtained from ωp versus  , the dispersion relation of 

figure 5(a). For  →0, in the linear region of the dispersion 

curve, value for velocity of sound turns out to be 1771 m/s, 

and turns to be aligned with experimental measurements [27], 

reported to be nearly 1790 m/s.  

 

6. Conclusion and Future Scope  
 

This can be concluded from the theoretical investigation that 

the modified microscopic theory is able to predict the 

dynamical structure factors and the complete dynamics of a 

strongly correlated fluid of potassium at 338 K. The theory in 

the modified form offers an extensive improvement over the 

earlier microscopic theory. This approach takes into account 

the particle correlations by defining a relaxation time through 

the diffusive motion of interacting particles, which enables 

the evaluation of significant dynamical properties, including 

collective modes, the diffusion coefficient, and the sound 

velocity.  
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