
© 2024, WAJES All Rights Reserved 1

World Academics Journal of

Engineering Sciences
Vol.11, Issue.4, pp.01-07, December 2024

E-ISSN: 2348-635X

Available online at: www.isroset.org

Research Article

From Web to Insights: Automating and Optimizing Job Data Collection

with Selenium

Pramiti Tewari
1*

, Utkarsh Gupta
2

, Samriddhi Tripathi
3

, Ajay Kumar
4

1,2,3,4CSE, Jaypee University of Engineering and Technology, Guna, India

*Corresponding Author: pramiti0309@gmail.com

Received: 25/Oct/2024; Accepted: 27/Nov/2024; Published: 31/Dec/2024

Abstract— The research explores web scraping as an efficient method for data extraction, focusing on job postings from

LinkedIn using Selenium. By automating the interactions with dynamic web elements, the study extracts job data such as job

titles, companies, and addresses from the recent job postings. It also addresses the challenges such as dynamic content handling,

anti-bot mechanisms while also keeping the legal norms and ethical considerations of data mining. Python modules such as

BeautifulSoup, Scrapy and Selenium are reviewed as choices for the automated script while emphasis is given on Selenium’s

scalability, robustness, efficiency and adaptability to real-world scenarios such as multi-page navigation, error handling and

regular updates. The approach highlights web scraping’s potential in leveraging data mining and potential for effective analysis,

offering an ethical solution for data-driven approach.

Keywords— Web Scraping, Selenium, Python Automation, Dynamic Content Handling, Pagination, WebDriver

1. Introduction

With the rapid growth in the need to collect and study data,

data extraction and collection has become a vital requirement

for industries to make decisions, solve issues and generate

insights in order to develop the latest software or tools in

general. Data collection can be done in various ways namely

surveys and manual entry, extraction of data using web

scraping, accessing data via Application Programming

Interfaces from websites, using query languages such as SQL

or NoSQL to extract data from databases and techniques as

file parsing. While selecting any of the given techniques, the

context and aim of the research must be accounted for [1].

The challenges of getting relevant data from social media

sites arises due to limited accessibility and continuous

updates in the websites. Despite, the challenges posed

systematic extraction is often seen as a cornerstone and the

most relevant process to collect data and generate insights or

facilitate studies.

Web scraping is one of the commonly used techniques to

extract first-hand information from the websites or vivid

platforms using an automated script. Libraries such as Scrapy,

BeautifulSoup and Selenium are used to write the automated

scripts in order to scrape data. However, some challenges are

incurred while using these solutions such as ethical concerns

related to the privacy of data, the limitations that such

websites impose and risks of violating the site’s policies.

The article explores various web scraping techniques and the

challenges presented by them along with the probable

solutions. It focuses on leveraging the Selenium module,

using Chrome WebDriver to scrape job postings from

LinkedIn. Python and its modules are used to automate data

extraction, navigate through the pages and manage elements

dynamically. The article aims to highlight the aspects of web

scraping using Selenium and discuss the various challenges

faced and the various solutions to optimize the scraping

process. By organizing the data collected, the approach is

utilized to study the latest trends in the job market with the

primary benefit of being an efficient tool to scrape the recent

data from the various sites.

2. Background

The job market is constantly evolving with new trends in skill

sets, the task force and the tech stack in use. Social media

postings on the recent hirings are at the dispense of the

organizations to hire employees. Manually analyzing this data

to study the recent trends in extremely inefficient which in

turn leads to a need of automated methods to collect and

analyze data. Web scraping offers a method to systematically

collect this data and store it in the form of CSV files.

2.1 Existing Work

Web Scraping involves bots or crawlers to extract specific

data from websites and store in database. The targeted data

retrieving techniques are useful to analyze the data [2].

http://www.isroset.org/
https://orcid.org/0009-0006-8045-6957
https://orcid.org/0009-0009-1416-5918
https://orcid.org/0009-0008-1814-5781
https://orcid.org/0000-0001-5602-6486

World Academics Journal of Engineering Sciences Vol.11, Issue.4, Dec. 2024

© 2024, WAJES All Rights Reserved 2

Modern frameworks account for an ease of setting up

pipelines for web scraping reducing the efforts and is an

important alternative when APIs are unavailable [3]. It is an

aid for the analysis of unstructured data and involves various

technologies such as spidering and pattern matching [4].

Python’s ease of use and the vast development community

make it a natural choice for web scraping. It not only fosters

advancements in the diverse applications such as open

government data, big data analytics, business intelligence etc.

but also promotes development [5]. Another commonly used

programming language is R which statistically integrates

programming tools for the datasets [6]. Research has also

been conducted on integrating traditional statistical methods

with modern computational techniques to leverage the field of

data mining [7]. Various approaches such as using DOM tree

for parsing or using UzunExt which extracts the contents

without forming a DOM tree but by using strings [8]. The

article utilizes different approaches for successful data

extraction.

2.2 Tools and Technologies for Data Scraping

Web scraping is one of the commonly used techniques to

extract first-hand information from the websites or vivid

platforms using an automated script. Web pages can be

categorized as static and dynamic. Static pages, often, are

easier to scrape since an HTTP request is sent to the server

while dynamic pages rely on interacting with the page

elements and server-side scripting languages such as

JavaScript, PHP etc. [9]. Various libraries are utilized for this

purpose:

2.2.1 BeautifulSoup

BeautifulSoup is a python library widely used for parsing the

web documents, particularly HTML and XML documents. It

facilitates structured data extraction by travelling the DOM

tree of the document [10]. It converts the document to

Unicode and UTF-8 and works with a parser to navigate

through the pages [11]. This feature is particularly important

for scraping web pages with diverse and non-standard

character sets. It has been tailored to deal with specific parts

of the web pages and prioritizes speed over efficiency, which

could be a drawback for more intricate scraping tasks

requiring comprehensive data extraction, leaving some data

unprocessed [12]. It is designed to quickly parse and navigate

documents, but for more complex HTML pages, it might not

be as thorough as other parsers. This trade-off makes it an

excellent choice for straightforward scraping tasks where

speed is a priority.

2.2.2 Scrapy

Scrapy allows cascade operations and accounts for data

needed for listings. It provides selectors necessary to handle

broken HTML codes [13]. Scrapy comes with features such

as creating a spider class, responsible for defining how a

website must be scrapped and then saves it. However, it also

handles static elements with more efficiency.

2.2.3 Selenium

Selenium is a powerful, versatile and robust module used to

dynamically interact with the elements on a web page and

emulate user actions such as clicking buttons, entering text,

scrolling, and navigating through different pages. It also

provides an easy and seamless integration with API’s and an

easy access to web drivers [14] to control different browsers

like Chrome, Firefox, Safari, Edge. These drivers translate

Selenium commands into browser-specific actions, making it

a versatile tool for cross-browser testing and automation.

Class labels or unique identities such as IDs, names and

XPath are used for efficient data extraction [15]. This precise

targeting of elements is necessary for reliable data extraction,

particularly from complex web pages with nested elements or

dynamically generated content.

Due to the dynamic nature of Selenium and seamless

handling of AJAX (Asynchronous JavaScript and XML)

calls, it ensures that interaction with elements is performed

once they are fully loaded and ready, thus it is one of the most

sought-after modules for web scraping. Selenium works

exceptionally well in automating complex workflows that

involve multiple steps and interactions across different web

pages. For example, it can log into websites, navigate through

several pages, fill out forms, and extract the necessary

information, all while handling dynamic content and

interactions seamlessly.

2.3 Role of Web Scraping in Data Analytics

Web scraping plays a critical role in data analytics by

providing a powerful means to collect large volumes of data

from the internet. Web Scraping enables data collection by

facilitating professionals with data collection by tracking

emerging trends in the desired fields and optimizing the

results for any sort of analysis predictive results. This process

involves automated extraction of information from websites

to derive valuable insights and support various business

decisions. It is also insightful for market dynamics,

economics related data, competitive data and prevailing

trends which could be used by firms to form an action plan

for their product building and execution [16].

By leveraging machine learning algorithms and statistical

models, we can analyse this data to uncover patterns, predict

future trends, and make data-driven decisions. This helps in

improving the accuracy and reliability of predictive analytics.

The data collected through web scraping can be used to

formulate actionable plans for various aspects. Individuals

can use this data to make long-term plans and roadmap to

learn about new growth opportunities.

3. Data Extraction

Data extraction in this study is done using an automated script

written using the Selenium module of Python using Jupyter

notebook as a computing platform as it supports

programming documents that seamlessly integrate code bases

and results, efficient ode debugging and offers effective

visualizations for the input [17]. With its support for

markdown cells, code cells, and visual outputs, Jupyter

Notebook allows researchers to write, test, and debug code

while simultaneously viewing the results of their executions,

thus enhances readability and presentation. The flowchart

World Academics Journal of Engineering Sciences Vol.11, Issue.4, Dec. 2024

© 2024, WAJES All Rights Reserved 3

shown in Figure 1 illustrates the sequential steps in the

automated process. It outlines the sequential steps in the

automated job data extraction process, capturing the intricate

interactions between web elements and the dynamic nature of

LinkedIn’s website. These steps include logging into

LinkedIn, navigating through different web pages, identifying

and interacting with web elements, and extracting the

required data.

The script systematically collects data from various sections

of the LinkedIn job postings, which includes job titles,

company names, locations, and other relevant details. The

flowchart also showcases implementation of exception

handling. This is crucial for managing the dynamic changes

on LinkedIn’s website, such as content loading delays,

changes in web elements, etc. Each step of the workflow is

designed to ensure systematic extraction, minimizing the risk

of data loss. Automating the data extraction process with

Selenium significantly increases efficiency compared to

manual data collection. This is essential for conducting

reliable data analysis and making informed decisions based

on the extracted data.

This flowchart not only visualizes the overall process but also

highlights the logic behind navigation, data collection, and

exception handling. The use of Selenium allows for real-time

interaction with web elements, enabling accurate and efficient

data retrieval. It systematically represents each step, from

launching the web driver to processing the extracted data,

ensuring a clear understanding of the workflow.

Figure 1. Overview of data extraction workflow

4. Methodology

Here the author presents the automated script using a

pseudocode:

Figure 2. Initialization of variables

The author begins with the initialization of a flag to 0, which

shall be used to indicate whether the login was successful or

not, while three empty lists are initialized: ‘xpath_list’ for

storing XPaths of page buttons, ‘job_details’ for entering the

details of jobs like company name that posted the job,

location of posting, and ‘job_titles’ to keep track of job titles.

Figure 3. WebDriver installation and LinkedIn login

The `login` function contains several steps: installing and

starting the Chrome WebDriver to set up the web scraping

environment, introducing a delay by sleeping for a random

time between 5 to 10 seconds to mimic human interaction,

and navigating to the given URL, which hits the specified

LinkedIn login page.

Figure 4. Automating Login and Navigation

The login process then proceeds by defining the email and

identifying the email input field by its ID 'username'. The

email is then entered into this field. The user is prompted to

enter their LinkedIn password securely using a secure input

method such as masking the password input with dots and

World Academics Journal of Engineering Sciences Vol.11, Issue.4, Dec. 2024

© 2024, WAJES All Rights Reserved 4

asterisks, and the password input field is identified by its ID

'password'. The password is entered into this field. Finally,

the login button is identified by its XPath and clicked to

submit the form. Once signed in, all pagination buttons on the

webpage are located using their class name ‘artdeco-

pagination_indicator’. Flag variable is updated to 1 indicating

successful login process.

Figure 5. Extracting Pagination XPaths

After logging in, the author also displays a message “logged

in”. The process then moves to extracting the XPaths of these

page buttons. For each page button in the `li_elements`, the

author locates the button element within the list item by

XPath, extract the button's absolute XPath using JavaScript

execution. Then the author appends this XPath to the

`xpath_list`. If an exception occurs, an error message is

printed ensuring smooth execution of the program even if

some elements are not found. The number of page buttons

found is then printed, which confirms the number of buttons

extracted.

Figure 6. Extracting and storing job details

A variable `a` is initialized to 1, which is used to keep a count

of number of jobs extracted. The next process involves

extracting job details. Job titles are retrieved by their class

name 'full-width.artdeco-entity-lockup__title.ember-view',

job addresses by 'job-card-container__metadata-item', job

links by 'job-card-container__link', and company names by

'job-card-container__primary-description'. For each address,

link, and company, the current date is captured. The extracted

job details, including the address text, href link, company

text, and date of extraction, are appended to the `job_details`

list. For each job, the job title text is appended to the

`job_titles` list. Following this, job details consisting address,

link and company name and job titles are printed along with

date extracted.

Figure 7. Extracting job data across pages

To handle multiple pages, the second page button is located

by its XPath and clicked to navigate to the second page. The

program then waits for the job elements to load, ensuring the

new web page is fully loaded. For each page button from the

second to the last, the extraction and printing process for job

titles, addresses, links, and company names is repeated. The

next page button is located by its XPath and clicked to

navigate to the next page, and the program waits for all the

job elements to load to ensure the smooth and efficient

execution of the code. The loop terminates after the extraction

is completed till the last page.

Figure 8. WebDriver error handling

World Academics Journal of Engineering Sciences Vol.11, Issue.4, Dec. 2024

© 2024, WAJES All Rights Reserved 5

The final step is to quit the WebDriver, effectively closing the

browser. In terms of exception handling, if an exception

occurs, the program indicates the occurrence by printing "in

Exception" and ensures the browser is closed by quitting the

WebDriver before the script re-attempts the login function. It

then sleeps for a random time between 2 to 10 seconds to

introduce a delay before retrying the process. After this delay,

the `login` function is called again to retry the sign in process.

Eventually, the function returns the flag to indicate the status

of the login attempt which helps in identifying if the code

needs to retry or not.

This script not only handles the multiple exceptions and

ensures smooth execution but also accounts for the updates in

the application.

5. Challenges in Development

With the ever-evolving trends, manually extracting and

analyzing vast datasets is a cumbersome, time-consuming and

an inefficient process. Therefore, automation script is a more

viable and effective solution when dealing with such large

volume of data. However, it comes with a fair share of

challenges. One major issue is that data is generally not static,

so the results might change even for the same data. This

means that even if you extract data from the same source at

different times, the results can vary. Moreover, websites

change their structure time to time which pose a challenge

while timely updating the script. Generally, non-sequential

URL parameters for handling multiple pages are utilized by

websites to obstruct data extraction, which makes it

extremely dynamic in nature, posing another challenge [18].

Usually, websites also have strict terms and privacy measures

to avoid any breach in data privacy, which can be concerning

especially if there is no accountability of the data or if it is

outdated [19]. Selective reporting or lack of control over the

mining of data can also lead to many limitations across the

internet [20]. However, with the author’s work a generic

dataset is utilized to contribute to a job recommendation tool,

which has its own scope in the future, thus contributing in the

field of technology. The author’s proposed approach

encountered many challenges in the development stage:

5.1 ElementClickInterceptedException

The error ‘ElementClickInterceptedException’ is faced when

script tries to click a button, but it could not locate that

element. For example, the button labeled ‘Page 5’ could not

be clicked because a <div> with the class ‘scaffold-

layout_list’ was overlapping it. This problem occurs when the

page layout changes or dynamic content loads, causing

elements to overlap the target element.

To address the ElementClickInterceptedException, it is

important to ensure that the page has fully loaded and all

elements are in their final positions before attempting to

interact with them. To fix this issue, author implied Implicit

wait technique. Implicit waits tell the web driver to wait for a

certain amount of time when trying to find an element if it is

not immediately available. If the problem persists, as a last

resort, author can use JavaScript to click the element. This

bypasses the normal Selenium click mechanism and can

sometimes avoid the above-mentioned problem.

5.2 LinkedIn’s Anti-Bot Detection

LinkedIn has sophisticated systems to detect automated tools

and block or redirect them. These systems are designed to

maintain the integrity of the platform by ensuring that all

users abide by LinkedIn's terms of service. It happens if

LinkedIn notices unusual browsing patterns that suggest a bot

is being used. Bots often perform repetitive actions at a speed

and consistency that is unusual for human users.

As a result, when LinkedIn detects suspicious activity, the

user might experience redirects to login pages or different

URLs to verify their identity. Another possible result is an

HTTP Error 429. This error means LinkedIn has blocked the

IP address because it made too many requests in a short

period. This mechanism is called rate limiting, which restricts

the number of requests that can be made from a single IP

address within a specified timeframe.

To avoid violating LinkedIn’s anti-bot detection mechanisms,

it is essential to mimic human browsing behaviour more

closely and reduce the frequency of requests. Implementing

delays between requests can help in mimicking human

browsing patterns. Human interactions are generally irregular,

so incorporating randomness in your script can help avoid

detection. Avoid Continuous Scraping, schedule it to run at

intervals.

5.3 MaxRetryError

The ‘MaxRetryError’ implies that a script repeatedly tried

and failed to connect to a server. In this case, it was trying to

reach localhost on port 55063 but could not establish a

connection. The displayed message, [WinError 10061] No

connection could be made because the target machine

actively refused it, means that the server on localhost is not

accepting connections on the specified port. This issue can

arise from various underlying causes.

This can happen due to many reasons such as if the server is

not running, script may be trying to connect to an incorrect

port, firewalls or other security software might be blocking

the connection. If the server is not active, it cannot accept any

connections, leading to a refusal.

The issue can be fixed by ensuring that the server is up and

running. Confirm that the port specified in the script matches

the port on which the server is listening. Ensure that your

firewall or any security software is not blocking the port, if

any, then adjust the firewall settings to allow traffic on the

specified port.

6. Results and Discussion

Here, the results of web scraping process using Selenium are

presented in a tabular manner. This table 6.1 summarizes the

extracted job postings, and presents the details like job title,

company name, location and the date of extraction.

World Academics Journal of Engineering Sciences Vol.11, Issue.4, Dec. 2024

© 2024, WAJES All Rights Reserved 6

Table 6.1 Summary of Job Data Extracted from LinkedIn

S.

No

Title Company Location Date

1. Data

Scientist

Recro India

(Remote)

13-10-24

2. SEO Intern SEO

Inventiv

India

(Remote)

16-10-24

3. Data

Analyst

After

Passout Pvt

Ltd

Noida, India

(On-site)

18-10-24

4. ML

Engineer

Weekday

(YC W21)

Noida, India

(On-site)

29-10-24

5. AI Engineer IBM India

(Remote)

13-11-24

6. SDE intern Contlo India

(Remote)

07-10-24

7. Web

Developer

Outscal India

(Remote)

07-10-24

The script's effectiveness in gathering relevant job data is

quite evident. Each entry reflects to a unique job posting,

providing a snapshot of the current job market trends. This

data can be further analysed to identify patterns and emerging

skills for various job roles. Date of extraction ensures that the

data is relevant and up-to-date. This is crucial for accurate

and reliable analysis.

7. Conclusion

In this study, the author explored the vital role of web

scraping in data analytics. Web scraping and techniques

confronting numerous difficulties as the extraction of the

information are not excessively simple [21]. The author’s

emphasis was on its application in extracting job postings

from LinkedIn using Selenium. The automated approach

showed us the limitations and inefficiencies of manual data

collection, providing a more efficient and scalable solution to

analyze evolving job market trends. By leveraging Python’s

varied libraries, particularly Selenium, the research

showcased how dynamic interactions with web elements and

navigating multiple pages, can be effectively automated.

Nowadays, websites often use JavaScript to load data

dynamically which poses a significant challenge for

conventional web scraping techniques. Selenium, however,

can interact with browser just like a human user, waiting for

elements to load and then extracting the necessary

information.

User authentication was another critical challenge addressed

by the author. The author showed how Selenium could be

used to automate sign in process securely, ensuring that the

user credentials are kept private and that the scraping process

remains within the bounds of LinkedIn’s terms of data

security policy.

Job postings on LinkedIn are typically spread across multiple

pages. The author displayed how this process could be

automated, systematically handled pagination to gather a

comprehensive dataset of job postings. Traversing multiple

pages of job listings was another highlight of the study.

The proposed technique highlights the flexibility and power

of Selenium in handling real-world challenges such as

dynamic content loading, user authentication, and traversing

data in multiple pages. During the extraction process, the

author followed all the privacy and data security guidelines

stated by LinkedIn. This ensured that the data collection was

conducted ethically and legally, respecting user privacy and

the platform's terms of service.

Through the systematic handling of errors, and successfully

extracting the job details through web scraping one can

demonstrate its immense value as a tool for data-driven

decision-making in an increasingly digital world. By

automating the extraction of job postings from LinkedIn, the

author highlighted how such techniques could provide deeper

insights into job market trends, thereby helping in more

informed decision-making [22].

 The research highlighted the power and flexibility of

Selenium in overcoming real-world challenges, making it a

reliable tool for modern data analytics.

Conflict of Interest
The authors declare that they do not have any conflict of

interest.

Funding Source

The present work has no funding source in any manner from

any organization.

Authors’ Contributions

Author 1 conceived the study and performed conducive

literary research, critical review, perceiving the conceptual

analysis taken up. Through this rigorous review process,

Author 1 was able to perceive and articulate the conceptual

analysis that formed the basis of the research.

Author 2 contributed in the technical aspect of the research

involving development of the code for data extraction and

analysis and conceptualized the execution process by

designing algorithms and writing scripts.

Author 3 processed the data, handled the collection, and

played an instrumental role in the literature review.

Author 4 directed the overall progress of the study providing

guidance and oversight throughout the research process. and

reviewed and finalized the article.

Acknowledgements

A special mention to the open-source documents and tools for

their invaluable support, enabling seamless implementation

and execution of the project. We extend our heartfelt

gratitude to the creators and maintainers of the open-source

documents and tools. Their accessibility and comprehensive

guidance greatly contributed to the development and

optimization of the automated scraping script. These

resources offered detailed instructions examples and

advanced techniques that enhanced the efficiency and

reliability of our script.

The open-source community's commitment to sharing

knowledge and improving tools facilitated our ability to

navigate challenges, such as handling dynamic content and

World Academics Journal of Engineering Sciences Vol.11, Issue.4, Dec. 2024

© 2024, WAJES All Rights Reserved 7

ensuring data accuracy. The support from these open-source

documents and tools reflected the importance of community-

driven development in advancing technological capabilities.

We acknowledge and appreciate the significant impact of

these resources and the dedicated individuals behind them,

whose efforts have empowered countless projects like ours to

achieve their goals.

References

[1] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software

engineers: Data collection techniques for software field studies,”

Empir. Softw. Eng., Vol.10, No.3, pp.311–341, 2005. doi:

10.1007/s10664-005-1290-x.

[2] H. Chaib and K. Salah-ddine, “Using Web Scraping In A Knowledge

Environment To Build Ontologies Using Python And Scrapy,” no.
October, 2020.

[3] H. Lo, M. Reboiro-jato, F. Fdez-riverola, and D. Glez-pen, “Web

scraping technologies in an API world,” Vol.15, No.5, pp.788–797,

2013. doi: 10.1093/bib/bbt026.

[4] M. A. Khder, “Web Scraping or Web Crawling : State of Art ,

Techniques , Approaches and Application,” Vol.13, No.3, 2021. doi:
10.15849/IJASCA.211128.11.

[5] V. Singrodia and A. Mitra, “A Review on Web Scrapping and its

Applications,” 2019 Int. Conf. Comput. Commun. Informatics, no.
January, pp.1–6, 2019. doi: 10.1109/ICCCI.2019.8821809.

[6] R. J. E. James, “Web Scraping Using R,” 2019. doi:

10.1177/2515245919859535.
[7] M. Dogucu and M. Çetinkaya-rundel, “Web Scraping in the Statistics

and Data Science Curriculum : Challenges and Opportunities Web

Scraping in the Statistics and Data Science Curriculum : Challenges
and,” J. Stat. Educ., pp.1–24, 2021. doi:

10.1080/10691898.2020.1787116.

[8] E. Uzun, “A Novel Web Scraping Approach Using the Additional
Information Obtained from Web Pages,” IEEE Access, Vol.8,

pp.61726–61740, 2020. doi: 10.1109/ACCESS.2020.2984503.

[9] S. Kumar, J. Thakur, D. Ekka, and I. Sahu, “Web Scraping Using
Python,” Int. J. Adv. Eng. Manag., Vol.4, No.9, pp.235, 2022. doi:

10.35629/5252-0409235237.

[10] C. Zheng, G. He, and Z. Peng, “A Study of Web Information
Extraction Technology Based on Beautiful Soup,” J. Comput., Vol.10,

No.6, pp.381–387, 2015. doi: 10.17706/jcp.10.6.381-387.

[11] L. Richardson, “Beautiful Soup Documentation Release 4.4.0,”
Media.Readthedocs.Org, pp.1–72, 2019.

[12] A. Abodayeh, R. Hejazi, W. Najjar, L. Shihadeh, and R. Latif, “Web

Scraping for Data Analytics: A BeautifulSoup Implementation,” Proc.
- 2023 6th Int. Conf. Women Data Sci. Prince Sultan Univ. WiDS-

PSU 2023, no. January, pp.65–69, 2023. doi: 10.1109/WiDS-

PSU57071.2023.00025.
[13] V. Suganthi and M. M. Varun, “INTERNATIONAL JOURNAL OF

MULTIDISCIPLINARY RESEARCH Automation Using Selenium,”

Sci. Eng. Technol. | An ISO, Vol.9001, No.4, pp.5181, 2008. doi:
10.15680/IJMRSET.2024.0704026.

[14] S. Mehta, P. Gayatri, and P. Jain, “An Improving Approach for Fast
Web Scrapping Using Machine Learning and Selenium Automation,”

Vol 8, No.10, pp.434–438, 2019.

[15] K. Henrys, “Importance of web scraping in e-commerce and e-
marketing,” no. January, pp.1–10, 2021.

[16] F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A Large-scale

Study about Quality and Reproducibility of Jupyter Notebooks,”
pp.1–11, 2024.

[17] P. Meschenmoser, N. Meuschke, M. Hotz, and B. Gipp,

“Bibliographic Details BibTe X , EndNote … Authors ’ Details D,
Lib Magazine Scraping Scientific Web Repositories : Challenges and

Solutions for Automated Content Extraction 1 Introduction 2 Related

Work 3 Challenges for Scraping”, doi: 10.1045/September, 2016.
[18] V. Krotov and L. Johnson, “Big web data: Challenges related to data,

technology, legality, and ethics,” Bus. Horiz., no. October 2022, 2023.

doi: 10.1016/j.bushor.2022.10.001.
[19] K. Weerasinghe, M. W. P. Maduranga, and M. M. V. T. Kawya,

“Enhancing Web Scraping with Artificial Intelligence: A Review,”

January, 2024.

[20] V. Srividhya and P. Megala, “Scraping and Visualization of Product

Data from E-commerce Websites,” Int. J. Comput. Sci. Eng., Vol.7,
No.5, pp.1403–1407, 2019. doi: 10.26438/ijcse/v7i5.14031407.

[21] S. Kulkarni, “Web Scraping: Extracting Insights from the Digital
Landscape,” Int. J. Res. Appl. Sci. Eng. Technol., Vol.11, No.5,

pp.7564–7567, 2023. doi: 10.22214/ijraset.2023.53467.

AUTHORS PROFILE

Pramiti Tewari has done her schooling

from Puranchandra Vidyaniketan,

Kanpur. Currently, she is pursuing

B.Tech. in Computer Science and

Engineering from Jaypee University of

Engineering and Technology, Guna,

Madhya Pradesh (India). Her interests

include Data mining, statistical analytics

and modelling along with a proclivity towards Applied

Mathematics and Combinatorics.

Utkarsh Gupta has done his schooling

from Heritage International School,

Kanpur. Currently, he is pursuing B.Tech.

in Computer Science and Engineering

from Jaypee University of Engineering

and Technology, Guna, Madhya Pradesh

(India). His interests include Data

Analysis, Machine Learning and Game

Development.

Samriddhi Tripathi completed her

schooling at Carmel Convent School,

Bhopal (M.P). Presently, she is pursuing a

B.Tech. degree in Computer Science at

Jaypee University of Engineering and

Technology, located in Guna, India. Her

areas of interest span Artificial

intelligence, Machine Learning, and

Developmental cores, with a strong inclination towards

Quantum Computing and a passion for exploring innovative

technologies and practical applications.

Ajay Kumar has been working as an

Assistant Professor since 2006. He

completed his Ph.D. in 2017 from Jaypee

University of Engineering and

Technology in the Department of

Computer Science and Engineering. His

Ph.D. work focused on the design and

analysis of an effective partition-based

clustering algorithm and its applications. He earned his M.E.

from M.I.T.S. Gwalior in 2005 with a thesis titled "Design

and Analysis of a Data-Mining Tool." He obtained his B.Tech

in Information Technology from M.I.E.T., Meerut in 2002.

Additionally, he has an Advanced Diploma in "Network

Planning and Administration" from C-DAC (Mohali). Prior to

joining JUET, he served as a Senior Lecturer in Computer

Science at S.I.E.T. Meerut. His areas of interest include Data

Mining and Pattern Recognition.

