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Abstract— The electricity distribution sector experiences substantial financial losses due to non-technical losses (NTLs) 

including electricity theft, faulty meters, and commercial losses. This research introduces a combined Convolutional Neural 

Network and Random Forest (CNN-RF) approach to detect NTLs using metered customer electricity consumption data from the 

Abuja Electricity Distribution Company. The dataset, covering February 1, 2021, to January 31, 2022, was cleaned, 

preprocessed, and used to train the model. The CNN part uses a multi-layer design with convolutional layers for automatic 

feature extraction, followed by dropout layers to mitigate overfitting. Early stopping mechanisms were introduced to optimize 

training efficiency and prevent model degradation. The RF component was trained on the automatically extracted features by the 

CNN component and classifies consumers into "energy loss" and "no energy loss" categories. The GridSearchCV algorithm 

facilitated the RF’s hyperparameters fine-tuning to achieve optimal configurations. The proposed model demonstrated a 

classification accuracy of 97% with a low false positive rate, thereby surpassing the effectiveness of manual inspections in 

detecting NTLs. This model can enhance the inspection hit rate and serve as an effective tool for detecting NTL activities in the 

electricity distribution sector. 

 

Keywords—Non-Technical Loss Detection, Random Forest, Machine Learning, Deep Learning, Energy Consumption, 

Convolution Neural Network 

 
 

1. Introduction 
 

The energy sector, particularly the power distribution sector, 

has been plagued with the problem of NTL, which includes 

electricity lost due to theft, faulty meters, commercial losses 

and collection losses. Eighty percent of global energy theft 

occurs through direct tapping from power lines, making it one 

of the most common methods of non-technical losses (NTLs) 

in electricity distribution systems [1]. These losses manifest 

across the electricity supply chain, from generation to 

transmission and distribution. Losses are typically 

categorized into Technical Losses (TLs) and Non-Technical 

Losses (NTLs). TL results from internal processes within the 

electrical system, such as energy dissipation in transformers, 

power lines and other components used to transmit electricity 

[2]. Conversely, NTL stems from external factors, including 

electricity theft, inaccurate meter readings, unpaid bills and 

database management errors. Among NTL, electricity theft is 

a predominant concern, characterized by unauthorized energy 

consumption [3]. This improper conduct often includes meter 

bypass, tampering with the meter reading, or meter tampering 

and illegal connection to electricity without paying for the 

energy consumed. Energy theft can lead to power surges, 

excessive loads on the electrical system, substantial financial 

losses for utility companies, and threats to public safety [4]. 

Overloading transformers and voltage imbalances caused by 

energy theft degrade power quality and reliability. Detecting 

electricity theft relies on labour-intensive routine inspections 

conducted by utility personnel to identify meter tampering, 

bypasses, and unauthorized connections. However, these 

methods are resource-intensive, costly, and often yield 

suboptimal results.  

 

Several strategies have been proposed to address these 

challenges, including the implementation of smart meters, 

data analytics and machine learning algorithms. This study 

investigates the application of deep learning and machine 

learning techniques to detect and classify NTL cases within 
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power distribution networks. By utilizing these advanced 

methods, the research aims to improve the accuracy and 

efficiency of NTL detection, thereby minimizing financial 

losses and promoting a more reliable of the electricity supply 

system.  

 

The paper is structured as follows: Section 1 provides an 

introduction to NTL. Section 2 examines previous research 

work on the NTL detection using deep learning and machine 

learning. Section 3 details the proposed methodology for 

NTL detection using CNN-RF algorithm. Section 4 outlines 

the results and discussion analysis. Section 5 discusses 

conclusions and future scope. 

 

2. Related Work  
 

Energy consumers rely on utilities to provide a continuous 

and reliable supply of electricity characterized by stable 

voltage, consistent magnitude, and regular frequency [5]. 

There is an increasing focus on understanding electricity 

consumption patterns among users in both residential and 

commercial sectors [6]. However, this expectation is 

frequently undermined by energy theft, which imposes 

substantial financial burdens on providers and disrupts power 

grids [7]. However, the previous techniques have often 

needed to be improved in effectively detecting instances of 

energy theft. For example, [4] developed a Deep CNN model 

utilizing smart meter data to address issues like inconsistent 

power usage and inefficient energy management. This model 

outperformed previous methods in accuracy and could 

automatically extract features, unlike traditional classifiers 

requiring manual input. However, the Model did not fully 

consider customer behaviour based on short-term electricity 

usage in identifying energy theft.  

 

[8] developed a machine learning-based model for detecting 

Non-Technical Loss (NTL) using feature engineering on data 

obtained from an electricity distribution firm, considering 

challenges such as class imbalance, data quality and feature 

selection. Their approach included classifiers such as Logistic 

Regression, Support Vector Machine, Decision Tree, and 

Random Forest, achieving superior results in accuracy, 

precision, recall, F1 score, and AUC score. However, the 

limitation of the proposed model was obtaining realistic 

datasets from utility companies. Similarly, [9] proposed a 

Bidirectional Gated Recurrent Unit BiGRU-CNN artificial 

neural network for power theft detection, offering a model 

architecture conducive to decision-making in the energy 

sector. Python's keras module was used to program the 

Model. Several tests were conducted using data from a real 

electricity provider, confirming the proposed approach was 

effective. However, the author did not focus on extensively 

tuning neural network’s hyperparameters or consider the 

temporal patterns in consumer behaviour within the BiGRU-

CNN model. 

 

To tackle issues like data imbalances, overfitting, and high-

dimensional data, [10] combined Long Short-Term Memory 

(LSTM) with bat-based Random Under-Sampling Boosting 

(RUSBoost) methods to detect unusual patterns in electricity 

consumption data. While their proposal exhibited strong 

performance, it remained sensitive to changes in input data 

and did not account for distinct datasets about residential and 

commercial buildings. [11] addressed similar challenges by 

introducing a Bidirectional Gated Recurrent Unit (BGRU) 

model for that utilized Synthetic Minority Oversampling 

Technique (SMOTE) and Tomek Link techniques for data 

balancing, along with Kernel Principal Component Analysis 

(KPCA) for feature extraction.  While this model 

outperformed other methods, the authors did not explore 

alternative integration methods to improves its effectiveness.  

 

Furthermore, [12] proposed a Wide and Deep CNN Model to 

detect electricity theft by analyzing two-dimensional 

electricity consumption data, which was effective for 

industrial applications like monitoring marijuana cultivation. 

The Model outperforms other methods like linear regression 

and random forest and could be used in industrial 

applications, such as indoor marijuana cultivation. However, 

the hybrid nature of the model resulted in longer execution 

times and issues with data imbalance. [13] developed an 

adaptive TSRNN architecture for electricity theft detection, 

which was optimized using Mahalanobis distance and 

achieved a high accuracy of 95.1%, with minimal false 

positives. The Model’s suitability for large-scale online 

monitoring of power consumption remained limited.  

 

In a different approach, [14] suggested a Support Vector 

Machine (SVM)-based approach for theft detection, 

achieving an accuracy of 81% but only 25% of cases can be 

accurately classified due to insufficient information on 

electrical thieves. [15] proposed a supervised machine 

learning model to identify electricity thieves and recover 

income losses for utility companies. It uses Adasyn to address 

class imbalance and uses VGG-16 for balanced data analysis. 

The model utilized Firefly Algorithm-based Extreme 

Gradient Boosting (FA-XGBoost) method for classification. 

While effective for analyzing large datasets, its performance 

diminished with increased data size. The authors [16] suggest 

using deep learning instead of artificial intelligence to extract 

features from large smart meter data for measuring electricity 

consumption. The method uses one-dimensional sample data 

and a semi-supervised deep learning model to prevent 

overfitting. While it outperforms cutting-edge techniques, it is 

less effective when applied to potential public datasets. 

 

In [17] introduced RUSBoost Manta-Ray Foraging 

Optimization (rus-MRFO) and RUSBoost Bird Swarm 

Algorithm models within a CNN framework to detect energy 

theft, achieving accuracy rates of 91.5% and 93.5% 

respectively. However, these models lacked a unified real-

time environment for electricity theft detection system. 

Meanwhile, [18] proposed a hybrid deep neural network 

model combining a CNN-particle swarm optimization with a 

gated recurrent unit, for effective electricity theft detection. 

This method, which uses real-time data from China's State 

Grid Corporation, classifies consumers as either honest or 

fraudulent. Nevertheless, the approach faces limitation such 

as extended execution time, overfitting issues and challenges 

in dealing with electricity thieves in complex real-world 
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scenarios. A novel XGBoost-based model is proposed by [19] 

for detecting electricity theft by examining customer 

electricity use trends. The Model employs six synthetic theft 

attacks, outperforming existing benchmarks. It achieves a 

96% detection rate and 3% false positive rate but faces data 

privacy issues. [20] introduced a hybrid CNN-RF model 

which uses convolution and downsampling methods to 

extract features from smart energy meter consumption 

datasets. The Model then uses a random forest to detect theft. 

Experiments show the model outperforms other methods but 

consumers' privacy concerns remain and with additional 

synthetic data generated to represent malicious customers this 

use of synthetic data may not fully represents complexities 

inherent in authentic real-world scenarios. 

 

3. Experimental Method 
 

This section outlines the methodology adopted by this paper, 

which utilizes a hybrid CNN-RF model designed to detect 

cases of NTL within power distribution systems and classify 

them as either energy loss or no energy loss incidents. 

Illustrated in Figure 1, the framework for the NTL detection 

method provides a visual representation of the 

methodological approach. Below, we delve into the various 

components of the NTL detection framework. 

 

Figure 1.  Framework of Non-Technical Loss Detection Method 

 
3.1 Data Injection (Energy Consumption Dataset) 

The dataset used in this study comprises monthly energy 

consumption records of metered customers (residential, 

commercial, industrial and special) obtained from a power 

distribution company, Abuja Electricity Distribution 

Company (AEDC). The dataset spans from February 1, 2021, 

to January 31, 2022, and includes 653,534 customers with 52 

features. A key feature is the "violation" column, which 

indicates meter conditions based on field inspections. The 

"violation" column classifies customers into two categories: 

No energy loss (labeled as "meter okay"). Energy loss 

(labeled as "meter bypass," "faulty meter," "burnt meter," 

"tampered meter," and "obsolete meter"). This classification 

helps identify fraudulent behaviour among consumers. 

 

3.2 Data Cleaning, Data Preprocessing and Analysis 

The dataset was cleaned and preprocessed to ensure data 

quality and suitability for analysis. The rows with missing 

values in the “violation” column were removed, reducing the 

dataset to 43,322 customers. Missing values for energy 

consumption and vending information were replaced with 

zeros. The ineffective columns were dropped, retaining 34 

relevant features. New features were created, including total 

annual energy consumption, total annual vending, weekday, 

and season (rainy or dry). The "violation" column was label 

encoded: "0" for no energy loss and "1" for energy loss. 

Categorical variables such as month, weekday, meter make, 

tariff bands, tariff class, and phase were encoded. The dataset 

was normalized to ensure consistency and improve model 

performance.  

 

After preprocessing, the dataset contained 43,322 rows and 

34 columns, with 15,729 instances of energy loss and 27,593 

cases of no energy loss. This represents a class imbalance, 

with 63.7% of instances being no energy loss and 36.3% 

being energy loss. The analysis of the energy consumption 

dataset is presented in Table 1, showing records of violations 

committed by customers, as identified during field 

inspections conducted by AEDC staff. 

 
Table 1. Types of Violation recorded in the datasets 

Violation Frequency 

Meter Okay 27593 

Meter Bypass 6899 

Energy Recovery 4084 

Faulty Meter 2513 

Tampered Meter 1773 

Obsolete Meter 344 

Burnt Meter/Faulty Meter 77 

Blank/Faulty Meter 26 

Abandoned Meter 13 

 

In the Table 1, the terms 'Meter Okay’ within the dataset 

signify instances of no recorded energy loss. In contrast, the 

categories 'Meter Bypass,' 'Energy Recovery,' 'Faulty Meter,' 

'Tampered Meter,' 'Obsolete Meter,' 'Burnt Meter/Faulty 

Meter,' 'Blank/Faulty Meter,' and 'Abandoned Meter' are 

classified as energy loss or Non-Technical Loss (NTL). The 

dataset has cases of honest metered customers, which is 

'Meter Okay', accounting for 27,593 times, and the total 

number of energy loss cases amounts to 15,729, with 'Meter 

Bypass' being the most prevalent, accounting for 6,899 cases. 

The analysis of the dataset, as illustrated in Figure 2, presents 

the distribution of recorded violations across different 

weekdays. The y-axis represents the violation status, where 

"1" indicates instances of energy loss, while "0" signifies no 

energy loss. The x-axis represents the count of violations. 

Focusing on category "1", which highlights cases of energy 

loss, the data reveals a significant concentration of violations 

during weekdays. Notably, Wednesdays and Thursdays 

exhibit the highest spikes, suggesting that energy theft is 

more frequently detected on these days. This trend may be 

attributed to increased monitoring efforts or specific 

consumption patterns that make fraudulent activities more 

detectable on these days. 

Data Injection 

(Energy 

Consumption 

Dataset) 

Data Cleaning, 

Data Pre- 

Processing and 

Analysis 

Splitting Train 

and Test Data 

Set  

Feature 

Extraction and 

Classification 

using CNN-RF 

Evaluation of 

CNN-RF 

Model 
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Figure 2. Violations during weekdays 

 

Similarly, as illustrated in Figure 3, the distribution of 

recorded violations across different months is presented. 

Focusing on category "1", which highlights cases of energy 

loss, the data reveals a significant concentration of violations 

in specific months. Notably, February and March exhibit the 

highest spikes, indicating that energy loss incidents were 

more frequently recorded during these periods. This trend 

may be attributed to seasonal variations in energy 

consumption, intensified inspection activities, or other 

operational factors that influence the detection of violations. 

 

 
Figure 3. Violations during the month 

 

3.3 Splitting Train and Test Dataset 

The dataset shows a significant class imbalance, with 63,7% 

representing legitimate electricity consumers, far outweighing 

the 36.3% of theft instances. To address this imbalance is 

essential to avoid bias and enhance the model's capacity to 

accurately distinguish between the two categories. To achieve 

this, the Synthetic Minority Over-Sampling Technique 

(SMOTE) was used. This enhances the minority class, 

typically representing NTL cases, by creating synthetic 

samples based nearest neighbours. This technique was chosen 

because it prevents the model from overfitting to the majority 

class while ensuring the minority class is well represented. 

After balancing, the preprocessed dataset was divided into 

segments for effective training and evaluation of the CNN-RF 

model. A cross-validation method was used, splitting the 

datasets into 70% for training and 30% for testing. This split 

ensures that the model is trained on one portion of the data 

and evaluated on another, unseen portion, minimizing the risk 

of overfitting. 

 

3.4 Feature Extraction and Classification using CNN-RF 

Model 

The hybrid CNN-RF model was developed in two main 

stages. First, the Convolutional Neural Network (CNN) 

model was constructed using the Sequential API in 

TensorFlow. The CNN architecture consisted of six 

convolutional layers, each employing 64 filters with a kernel 

size of 3, followed by the Rectified Linear Unit (ReLU) 

activation function. After the first convolutional layer, a max-

pooling layer with a pool size of 2 was added to reduce the 

spatial dimensions of the data by taking the maximum value 

within a 2-unit window. This down-sampling step helped 

prioritize the most significant features and reduce 

computational complexity. To prevent overfitting, a dropout 

layer with a rate of 20% was incorporated, randomly 

deactivating neurons during training. After the convolutional 

layers, a flattening layer was used to convert the multi-

dimensional data into a one-dimensional vector, which was 

then passed through two dense layers. The first dense layer 

contained 100 neurons with ReLU activation, while the final 

output layer consisted of a single neuron with a sigmoid 

activation function for binary classification. The model was 

compiled using the Adam optimizer with a learning rate of 

0.001 and a binary cross-entropy loss function. The training 

was conducted for 100 epochs using a batch size of 32, and 

the model's performance was evaluated using validation data. 

Early stopping was implemented to monitor the validation 

loss during training, halting the process if no improvement 

was observed for five consecutive epochs, ensuring optimal 

performance without overfitting. This approach allowed the 

model to learn effectively while avoiding excessive training 

that could lead to overfitting. Table 2 shows the architecture 

of the CNN Model. 
 

Table 2. The architecture of the CNN Model 

Layer (Type) Output Shape Param# 

Conv1d (Conv1D) (None, 31, 64) 256 

max_pooling1d (MaxPooling1D) (None, 15, 64) 0 

conv1d_1 (Conv1D) (None, 13, 64) 12352 

conv1d_2 (Conv1D) (None, 13, 64) 12352 

conv1d_3 (Conv1D) (None, 13, 64) 12352 

conv1d_4 (Conv1D) (None, 7, 64) 12352 

conv1d_5 (Conv1D) (None, 5, 64) 12352 

dropout (Dropout) (None, 5, 64) 0 

flatten (Flatten) (None, 320) 0 

dense (Dense) (None, 100) 32100 

dense_1 (Dense) (None, 1) 101 

 

In the second stage, features were extracted from the CNN's 

second-to-last layer, which served as input for the Random 

Forest (RF) classifier. The RF model was optimized using 

GridSearchCV to identify the best hyperparameters for the 

binary classification task. The optimal configuration included 

50 trees (n_estimators), a maximum depth of 9 (max_depth), 

the square root of the total number of features for node 

splitting (max_features), and a maximum of 9 leaf nodes per 

tree (max_leaf_nodes). The RF model was trained on the 

features extracted from the CNN, enabling it to classify 
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instances into energy loss and no energy loss categories 

effectively. This hybrid approach leverages the feature 

extraction capabilities of CNNs and the robust classification 

performance of Random Forests, making it well-suited for 

detecting Non-Technical Losses (NTLs) in power distribution 

systems. 

 

4. Results and Discussion 
 

The model development and programming were done using 

Python 3.11 on a laptop computer system with the following 

specifications: Windows 10 Enterprise Operating System, 

Intel(R) Core (TM) i7-6500U CPU@2.50GHz 2.60 GHz 

processor and 8.00 GB RAM. The CNN architecture was 

implemented using TensorFlow, while the interface 

connecting the CNN and the RF was implemented using 

Scikit-learn. All code execution was performed on Jupyter 

notebook server version 7.0.1. This study addressed NTL 

detection as a binary classification problem, categorizing each 

customer as either “Energy loss” or “No Energy loss”. To 

evaluate the performance of CNN-RF model, a real-world 

dataset comprising 12,997 customers’ monthly energy 

consumption records for the duration of one year was used 

(February 1, 2021 - January 31, 2022). The model's 

performance was evaluated using five key metrics: accuracy, 

precision, recall, F1-score, and Receiver Operating 

Characteristics Area Under Curve (ROC-AUC)). These 

metrics were derived from the confusion matrix, which 

provides detailed insights into the model’s classification 

outcomes. The confusion matrix, derived from the test dataset 

of 12,997 metered customers, is shown in Figure 4. It 

provides a breakdown of the model's classification results. 

 

Figure 4. Confusion Matrix of the CNN-RF Model 

 

The model correctly classified 7,996 cases as "No Energy 

Loss", indicating accurate identification of customers with no 

fraudulent activity. However, it incorrectly classified 242 

instances as "Energy Loss" when they were actually "No 

Energy Loss". These are cases where the model flagged 

legitimate customers as potential fraudsters, which could lead 

to unnecessary investigations. Similarly, the model 

incorrectly classified 190 cases as "No Energy Loss" when 

they were actually "Energy Loss". These are instances where 

the model failed to detect fraudulent activity, which could 

result in revenue loss for the utility company. On the other 

hand, the model correctly classified 4,569 instances as 

"Energy Loss", demonstrating its ability to accurately identify 

cases of energy theft or meter tampering. The confusion 

matrix highlights the model's strong ability to distinguish 

between "Energy Loss" and "No Energy Loss" cases, with a 

relatively low number of false positives and false negatives. 

This indicates that the model is both precise and reliable in 

detecting NTL. 

 

The model's performance was evaluated using several key 

metrics. Accuracy, which measures the proportion of 

correctly classified instances (both "Energy Loss" and "No 

Energy Loss") out of the total number of instances, was 97%. 

This high accuracy indicates that the model correctly 

classified the vast majority of cases, demonstrating its overall 

effectiveness in NTL detection. Precision, which measures 

the proportion of correctly predicted "Energy Loss" cases out 

of all cases predicted as "Energy Loss", was 95%. This means 

that 95% of the flagged cases were actual instances of energy 

loss, while 5% were false alarms. This high precision reduces 

the risk of unnecessary investigations into legitimate 

customers. Recall, which measures the proportion of actual 

"Energy Loss" cases that were correctly identified by the 

model, was 96%. This indicates that the model successfully 

detected 96% of all energy loss cases, minimizing the risk of 

undetected fraud. The F1-score, which is the harmonic mean 

of precision and recall, was 96%. This balanced measure 

ensures that the model is both accurate and comprehensive in 

detecting NTL. Finally, the ROC-AUC value of 0.99 

confirms the model's excellent ability to distinguish between 

"Energy Loss" and "No Energy Loss" cases. The ROC-AUC 

curve, shown in Figure 5, provides a graphical representation 

of the model's performance across different classification 

thresholds. The ROC curve plots the True Positive Rate 

(TPR), also known as recall or sensitivity, against the False 

Positive Rate (FPR) at various threshold settings. The TPR 

represents the proportion of actual "Energy Loss" cases 

correctly identified by the model, while the FPR represents 

the proportion of "No Energy Loss" cases incorrectly 

classified as "Energy Loss". 

 

 
Figure 5. ROC-AUC Curve of the CNN-RF Model 
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The Area Under the Curve (AUC) quantifies the model's 

ability to distinguish between the two classes. An AUC value 

of 0.99, which is very close to the maximum value of 1, 

indicates that the model has an excellent ability to 

differentiate between "Energy Loss" and "No Energy Loss" 

cases. This means that the model can achieve a high true 

positive rate while maintaining a low false positive rate, 

making it highly effective for NTL detection. The steep rise 

of the ROC curve in Figure 5 further illustrates this, as the 

model quickly achieves a high TPR with minimal increase in 

FPR. This performance is particularly important in real-world 

applications, where minimizing false positives (incorrectly 

flagging legitimate customers) is crucial to avoid unnecessary 

investigations, while maximizing true positives (correctly 

identifying energy theft) is essential to reduce revenue losses. 

To validate the performance of the proposed CNN-RF model, 

its results were compared with several baseline machine 

learning models, including Random Forest, Stochastic 

Gradient Descent, Gaussian Naive Bayes, Decision Tree, and 

Logistic Regression. As illustrated in Figure 6, the ROC-

AUC curves of these models were compared, revealing that 

the CNN-RF model consistently outperformed the baseline 

models. The ROC-AUC curve of the CNN-RF model is 

significantly closer to the top-left corner of the graph, 

indicating a higher TPR and lower FPR compared to the other 

models. This demonstrates the CNN-RF model's superior 

ability to distinguish between "Energy Loss" and "No Energy 

Loss" cases, as reflected by its AUC value of 0.99, which is 

higher than the AUC values of the baseline models. 

 

 
Figure 6. ROC-AUC based comparison of CNN-RF with ML Model 

 

As illustrated in Figure 7, the CNN-RF model also 

outperformed these baseline models across all performance 

metrics (accuracy, precision, recall, and F1-score). 

Specifically, the CNN-RF model achieved higher accuracy 

(97%) compared to the baseline models, indicating its 

superior ability to correctly classify both "Energy Loss" and 

"No Energy Loss" cases. The higher precision (95%) of the 

CNN-RF model suggests that it produces fewer false 

positives compared to the baseline models, reducing the risk 

of incorrectly flagging legitimate customers. The higher recall 

(96%) indicates that the CNN-RF model is more effective at 

detecting actual instances of energy loss, minimizing the risk 

of undetected fraud. The higher F1-score (96%) demonstrates 

that the CNN-RF model achieves a better balance between 

precision and recall compared to the baseline models. These 

results underscore the robustness and reliability of the CNN-

RF model in detecting NTL, making it a superior choice for 

energy theft detection in power distribution systems. 

 

 
Figure 7. Performance comparison of CNN-RF with ML Model 

 

The results demonstrate that the proposed CNN-RF model is 

highly effective in detecting Non-Technical Losses (NTL) in 

power distribution systems. The model's ability to achieve 

97% accuracy, 95% precision, 96% recall, and an F1-score of 

96% highlights its strong predictive capabilities. Additionally, 

the ROC-AUC value of 0.99 confirms the model's excellent 

ability to distinguish between "Energy Loss" and "No Energy 

Loss" cases. The low number of false positives (242) and 

false negatives (190) indicates that the model is both precise 

and reliable, minimizing the risk of unnecessary 

investigations and undetected fraud. The comparison with 

baseline models further validates the superiority of the CNN-

RF model, as it consistently outperformed other machine 

learning techniques across all performance metrics. 

 

These findings have significant implications for power 

distribution companies, as the CNN-RF model can help 

reduce revenue losses caused by energy theft and improve the 

overall efficiency of energy distribution systems. By 

accurately identifying instances of energy loss, the model 

enables utility companies to take targeted actions, such as 

conducting inspections or implementing preventive measures, 

to mitigate NTL. 

 

5. Conclusion and Future Scope 
 

This study introduced a hybrid model combining 

Convolutional Neural Network (CNN) and Random Forest 

(RF), referred to as the CNN-RF model, to detect Non-

Technical Losses (NTLs) in electricity consumption patterns 

of customers. The original dataset, sourced from the Abuja 

Electricity Distribution Company (AEDC), contained 

inconsistencies and missing data. To address these 
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challenges, comprehensive data preprocessing techniques 

were applied, including normalization and the Synthetic 

Minority Over-Sampling Technique (SMOTE) to address 

class imbalances. The CNN component, with its layers of 

convolution and pooling, efficiently and automatically 

extracted features from metered customers’ electricity 

consumption patterns, a process that traditionally requires 

significant manual input when using conventional classifiers. 

The CNN architecture also mitigated the risk of overfitting 

through the implementation of dropout layers and early 

stopping mechanisms, allowing the model to effectively learn 

from high-dimensional data while preventing degradation 

during training. The RF component, trained on the output of 

the CNN, classified the data into energy loss and non-energy 

loss categories. 

 

Our results show that the CNN-RF model achieved an 

accuracy of 97% with a low false positive rate. Testing with 

real-world data confirmed that our model outperformed other 

approaches in terms of accuracy, precision, recall, and F1-

score. The model's ROC-AUC value of 0.99 further 

demonstrated its excellent ability to distinguish between 

"Energy Loss" and "No Energy Loss" cases. These findings 

highlight the robustness and reliability of the CNN-RF model 

in detecting NTLs, making it a valuable tool for electricity 

distribution companies. While the CNN-RF model has 

demonstrated strong performance in detecting NTLs, there 

are several areas for future research to further enhance its 

effectiveness and applicability: The current model may 

exhibit bias when dealing with customers who have newly 

installed meters or those with less than a year of meter 

installation. Future research could focus on developing 

strategies to improve the model's performance for this 

specific customer category, such as incorporating additional 

data sources or using transfer learning techniques and also 

investigate the integration of the CNN-RF model with 

advanced metering infrastructure (AMI) and other smart grid 

components. This would enable more comprehensive 

monitoring and detection of NTLs across the entire power 

distribution network. 
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