
 © 2018, WAJM All Rights Reserved 1

World Academics Journal of __ Research Paper .
Management

Vol.6, Issue.2, pp.01-04, December (2018) E-ISSN: 2321-905X

An Levenshtein Transpose Distance Algorithm for approximating String

Matching

Meena Malviya
1
, Rajendra Gupta

2*

1,2

Rabindranath Tagore University, Raisen, India

Available online at: www.isroset.org

Received: 29/Jul/2018, Accepted: 26/Aug/2018, Online: 31/Dec/2018

Abstract- The string-matching is a very essential issue in the wider area of text processing. String-matching algorithms are

basic components used in implementations of practical existing software under most operating systems. Furthermore, they

emphasize programming methods that serve as paradigms in other fields of computer science. There are different solutions

have been proposed that allow solving the string matching issues. The main characteristic of string matching algorithm is the

fact that it attempts to establish the correspondence of the substring with the pattern in the reverse direction. This paper focuses

on an approach by implementing Levenshtein distance algorithm using transposition of characters. After the testing of data, it

is found that the implemented algorithm gives significant results while string matching.

Keywords: Levenshtein Distance Algorithm, Approximating String Matching, Stop words

I. INTRODUCTION

With the term, most usual understanding of "approximate"

or just "like" is that of similarity between two strings. By

some inspection identification process, the two strings can

be determined to be similar or not. The important property of

similarity which makes it very dissimilar from equivalence

is that similarity is not necessarily transitive; that is,

if r is similar to s

and s is similar to t,

then it does not necessarily follow

that r is similar to t.

An Approximate String Matching (ASM) has been mostly

applied in many fields, including network intrusion detection

systems, web searching, voice recognition and also

computational biology. Fundamentally, Approximate String

Matching is the problem of finding all positions of a string

where a given pattern occurs, allowing a limited number

of errors in the matches. The closeness of a match is

measured by the minimum number of edit operations used to

convert a factor of the input string into an exact match of the

pattern. The usual edit operations are insertion, deletion,

replacement, and transposition. There is a popular method

for ASM that allows three edit operations of insertion,

deletion, and substitution to transform a factor of the input

string into the pattern, which is called ASM with differences.

This method is also called as ASM with edit distances or

ASM with Levenshtein distance.

II. RELATED WORK

The exact pattern atching mean to find all occurrences of a

pattern positioned in a text. As suggested by Woo & Cheol

et al., the exact pattern matching can be useful in finding

sequences in DNA (Woo & Cheol et al., 2016). Moreover, it

can be useful to perform exact pattern matching prior to

approximate pattern matching to save computational time by

removing queries that exactly match before employing

algorithms with higher computational cost. This concept is

given by Smith and Waterman and Needleman and Wunsch

in 2015. The two algorithms can be clearly distinguished

from the mass of proposed methods for exact pattern

matching.

An another work done by Musser and Nishanov claim that

the skip loop of the fast Boyer and Moore algorithm

performs inadequately with small alphabets and long

patterns. This approach is to solve the problem is straight

forward and uses hashing. This is clearly transforming the

alphabet to a different space, using hashing also called q-

grams (Kytojoki, et al., 2013). The two problems arise in

strings from small alphabets. The time spent in the skip loop

is reduced while the number of times that a match needs to

be evaluated in detail is increased. This is even more

pronounced when a large number of matches are expected in

the text or if the suffix of the pattern is abundant in the text.

The author Raita (2016) created a variant of the Boyer and

Moore algorithm which introduced sentinels in order to

speed up searches by first comparing the parts of the pattern

with the weakest dependencies. The author reported an

http://www.isroset.org/

 World Academics J. of Management Vol. 6(2), Dec 2018, ISSN: 2321-905X

 © 2018, WAJM All Rights Reserved 2

improvement of approximately 35% over the Boyer and

Moore algorithm which has been shown by Smith (2010) to

be solely due to sentinel use, as opposed to character

dependencies within the pattern, as Raita concluded (Smith,

2015).

Moreover, two changes to the Boyer-Moore algorithm are

proposed which even allow for shifts when an initial match

needs to be evaluated. The look-up table for the skip-loop

seems to be un-necessary and it is therefore fully removed in

most of the algorithms and slightly reducing the algorithm’s

overhead. The semantics of the b1-shift table of the original

BM algorithm is slightly changed so that it can be utilized

for the skip loop as well as for all other evaluations. It also

allows for shifts in case of partial matches which is a great

benefit in case of small alphabets. It transpires that the shift

can be calculated by using the maximum of the suffix shift

and the shift at the position of the mismatch. In order to save

computation, either the suffix shift or the mismatch shift is

used in the algorithms developed in this study.

III. APPROXIMATE STRING MATCHING

ALGORITHMS

3.1 Brute-force search

Brute Force string matching algorithm refers to a

programming style that does not include any shortcuts to

improve performance, but instead relies on sheer computing

power to try all possibilities until the solution to a problem is

found. The brute force solution is simply to calculate the

total distance for every possible route and then select the

shortest one. This is not particularly efficient because it is

possible to eliminate many possible routes through clever

algorithms.

In an example in which there is a 5 digit password, in the

worst case scenario would take 10
5
 tries to crack. The time

complexity is determined in brute force is O(n*m).

Therefore if we search for a string of ‘n’ characters in a

string of ‘m’ characters using brute force, it will give n* m

tries.

The Brute-force algorithm make parallel pattern at the

beginning of text and in further step, the text moving from

left to right, compare each character of pattern to the

corresponding letter in text until all letters are found to

match or an mismatch is detected in the next step while

pattern is not found.

The functioning of Brute-force algorithm is as given below :

Brute_Force_String_Match (T[0...n-1], P[0...m-1])

for i ← 0 to n-m do

j ← 0

while j < m and P[j] = T[i+j] do

j++

if j = m then return i

return -1

3.2 Rabin-Karp algorithm

The Rabin-Karp is a type of pattern searching algorithm

which find the pattern in a more efficient manner. The

algorithm also checks the pattern by moving window one-

by-one, but without checking all letters in all cases. The

algorithm calculates a numerical (also called hash) value for

the pattern p, and for each m-character substring of text t.

Then, it compares the numerical values instead of comparing

the actual symbols. If any similarity is found, it compares

the pattern with the sub-string by Naive approach else it shift

to next sub-string of t to compare with the value of p.

The value can be calculated in the form of mathematical

(hash) values by using Horner’s rule. According to this

algorithm, lets assume,

h0 = k,

h1 = d(h0 − d
m−1

 .p[1] + p [m + 1]

Where p and substring ti can be too large to work with

conveniently.

The very simple solution is given here in which we can

compute p and the ti modulo a suitable modulus q. So for the

each value of i,

hi+1 = (d hi − t[i + 1].dm−1 + t[m + i + 1]) mod q

The modulus q is typically selected as a prime such that d.q

fills within one computer word.

3.3 Knuth-Morris-Pratt algorithm

The Knuth-Morris-Pratt algorithm is a linear time algorithm,

more accurately O(N + M). The main characteristic of

Knuth-Morris-Pratt algorithm (KMP) is each time when a

match between the pattern and a shift in the text fails, the

algorithm then use the information given by a specific table,

obtained by a preprocessing of the pattern to avoid re-

examine the characters that have been previously checked.

Thus, limiting the number of comparison required. So this

algorithm can be composed by two parts, a searching part

which consists to find the valid shifts in the text, where the

time complexity is O(N), obtained by comparison of the

pattern and the shifts of the text, and a preprocessing part

which consists to pre-processes the pattern. The algorithm

work in the following manner :

function kmp_search:

integer;

var i, j: integer;

begin i:= 1; j:= 1;

initnext;

repeat if (j = 0) or (a[i] = p[j])

then

begin i:= i+1; j:= j+1

end

 World Academics J. of Management Vol. 6(2), Dec 2018, ISSN: 2321-905X

 © 2018, WAJM All Rights Reserved 3

else

begin j:= next[j] end;

until (j > M) or (i > N);

if j > M

then kmp_search:= i - M

else

kmp_search:= i;

end;

IV. PROPOSED LEVENSHTEIN TRANSPOSE

ALGORITHM :

In the proposed work, the Levenshtein distance algorithm is

implemented with Levenshtein transpose distance. It can be

treated as an extension to Levenshtein Distance, which

allows one extra operation that is Transposition of two

adjacent characters. It can be illustrated with the following

example :

Suppose we have two words; TSART to START. In this

case the value is 1 (since shifting of S and T positions cost

only one operation). This can be implemented using

Levenshtein distance which is known as Levenshtein

Transpose Distance.

Here Levenshtein distance = 2 (Replace S by T and T by S)

This brings to Damerau-Levenshtein, which does not have

the limitations of restricted edit distance. The main

difference between Damarau-Levenshtein and the

implemented Levenshtein edit distance algorithm is that

when Damerau-Levenshtein computes a transposition, it

generally look much further backwards to find a match than

the reduced edit distance algorithm.

The cost of a transposition is calculated by the following

concept;

(cost before transposition) + (distance between rows) +

(distance between columns) + 1

The cost for all the four operations is calculated and the

minimum cost operation is selected. For each element in the

matrix, we just look at the three neighbor elements, in that

add 1 to their values, and use the minimum of the three for

the given element.

 the element to the left = previous cost for a delete

operation + 1 ... this is the current deletion cost

 the element above = previous cost for an insert

operation + 1 ... this is the current insertion cost

 the element to the upper left = previous cost for a

substitute operation + 1 if the letters differ, or + 0 if

the letters are the same ... this is the current

substitution cost

V. RESULT AND DISCUSSION

The algorithm Levenshtein edit distance makes a supposition

that causes some difficulty in some cases, although it

assumes no characters added or deleted between the

transposed characters.

The Levenshtein Transpose Distance algorithm calculates

the minimum edit operations that are needed to modify one

document to obtain second document. A matrix is

initialized measuring in the (m, n)-cell in which

Levenshtein distance between the m-character prefix of

one with the n-prefix of the other word. For testing the

algorithm, two documents 'A' and 'B' has been taken in the

study and compared by including stop words and removal

of stop words. All the experiments are done in MATLAB

analytical tool.

Table 1 : Text length of document ‘A’ and ‘B’ with and without using stop words

Text length of First

Document

Text length of Second

Document

First document ‘A’ after

removing stop words

Second document ‘B’ after

removing stop words

49 64 29 40

101 94 65 58

199 190 122 114

285 385 220 221

Table 2 : Time taken to calculate Levenshtein’s distance after removing stop words

Text length of first document ‘A’ Text length of second document ‘B’ Time taken to calculate Levensthein

distance with stop words (in milliseconds)

49 64 13

101 94 15

199 190 23

285 385 60

In the above table, 49 text length of document ‘A’ and ‘B’ means the document size. The document size means it contains

the defined number of words. The experiment is done by taking different document size from 50–1000.

 World Academics J. of Management Vol. 6(2), Dec 2018, ISSN: 2321-905X

 © 2018, WAJM All Rights Reserved 4

Fig. 1. Text length of document A with and without using stop words

The length of document ‘A’ and the length of same document

after using and removing the stop words are shown in Figure

1. In which, blue colour represents the complete text length of

document and red colour represents the length of document

after removing the stop words.

VI. CONCLUSION

The main difference between Damarau-Levenshtein distance

and the implemented Levenshtein edit distance algorithm is that

when Damerau-Levenshtein computes a transposition it

generally look much ahead backwards to find a match than the

reduced edit distance algorithm does. If there is a transposition,

the system in a way reverts to that earlier state, than calculates

the cost of getting back. It clearly shows that there is a

transposition between here and there.

The value of the cell is the lowest of the costs of addition,

deletion, substitution, or transposition, than we do not actually

have to check whether the differences in the middle of a

transposition are additions or deletions. In this case, we just

count both directions, and if neither is zero, the cost will simply

be too high for that cost to be chosen.

The documents with different text length of 100, 150, 200, 350,

500 is taken to calculate the Levenshtein edit distance and the

time need to compare both documents by using Levenshtein

edit distance algorithm. It is noticed that each document

consists of 25–40 per cent stop words, which are not useful for

any calculation. Therefore, it is observed that if 25 per cent stop

words are removed from any text document, 40 per cent time

can be reduced to calculate the Levenshtein’s edit distance.

Finally, it is observed that the proposed systems produce around

85 to 92 per cent successful result.

REFERENCES

[1] C. Charas, T. Lecroq and J. D. Pehoushek. 2005. A very fast string

matching algorithm for small alphabets and long patterns, Lecture

notes in Computer Science, Volume 1448, pp. 55-64, 2018
[2] J. J. McConnell, “Analysis of Algorithms”, Canisius College, pp 125-

128, 2018

[3] M. Crochemore and D. Perrin, 1991, Two Way String Matching,
Journal of the Association for Computing Machinery, Vol. 38, No 3,

pp.65I-675, 2018

[4] T. Raita, 1992, Tuning the Boyer–Moore–Horspool String, Searching
Algorithm, Software Practice and Experience, Vol 22(10),pp 879–

884, 2018

[5] R. Baeza-Yates and G. H. Gonnet, 1992, A New Approach To Text
Searching, Communication of the ACM,Vol.35, No.10, 2018

[6] James Lee Holloway, “Algorithms for string matching with

applications in Molecular Biology”, Oregon State University
Corvallis, OR, USA, 2018

[7] Luqman Gbadamosi, “Voice Recognition System Using Template

Matching”, International Journal of Research in Computer Science,
Volume 3 Issue 5, pp. 13-17, 2017

[8] Saurabh Tiwari and Deepak Motwani, “Feasible Study on Pattern

Matching Algorithms based on Intrusion Detection Systems”,

International Journal of Computer Applications 96(20):13-17, 2017

[9] Kavita Ahuja, Preeti Tuli, "Object Recognition by Template Matching
Using Correlations and Phase Angle Method", International Journal of

Advanced Research in Computer and Communication Engineering,

Vol. 2, Issue 3, 2017
[10] Prabhudeva S, "Plagiarism Detection by using Karp-Rabin and String

Matching Algorithm Together", IJCSNS International Journal of

Computer Science Engineering and Network Security, VOL.8 No.10,
2017

[11] Koloud Al-Khamaiseh, “A Survey of String Matching Algorithms”,

International Journal of Engineering Research and Applications, Vol.
4, Issue 7, Version 2, pp.144-156, 2017

[12] Knuth, D. E., Morris, J. H. Jr., and Pratt, V. R., “Fast pattern matching

in strings,” SIAM Journal of Computer, Vol. 6, No. 2, pp. 323-350,
2017.

[13] Boyer, R. S., and Moore, J. S., "A fast string searching algorithm”

Communication in ACM, Vol. 20, No. 10, pp. 762-772, 2016
[14] Rivest, R. L., “On the worst case behavior of string-searching

algorithms”, SIAM Journal of Computer, Vol. 6, No. 4, pp. 669-674,

2016
[15] Galil, Z., “An improving the worst-case running time of the Boyer-

Moore string matching algorithms” Communication ACM, Vol. 22,

No. 9, pp. 505-508, 2016
[16] Rytter, W., “A correct preprocessing algorithm for Boyer-Moore

string-searching” SIAM Journal of Computer, Vol. 9, No. 3, pp. 509-

512, 2016
[17] Guibas, L. J. and Odlyzko, A. R., “A new proof of the linearity of the

Boyer-Moore string searching algorithm” SIAM, Journal of

Computer, Vol. 9, No. 4, pp. 672-682, 2016
[18] Horspool, R. N., "fast searching in strings” Software Practice

Experience, Vol. 10, pp. 501-506, 2016

[19] Smit, G. “Comparison of three string matching Algorithms” Software
Practice Experience, Vol. 12, pp. 57-66, 2015

[20] Ushijima, K., Kurosaka, T., and Yoshida, K., “SNOBOL with

Japanese text processing facility” Proc. ICTP 83, pp. 235-240, 2015

0

1

2

3

4

5

0 20 40 60 80 100

D
e

vi
at

io
n

 (
in

 S
to

p
 w

o
rd

s)

Text Length (letters)

With Stop Words

Without Stop Words

