References
[1] U. Soni and U. Kumari, “Prevention of Power Theft Using Concept of Multifunction Meter and PLC,” International Journal of Computer Sciences and Engineering” Open Access Survey Paper, Vol.6, Issue.12, pp.443-447, 2018.
[2] Z. A. Khan, M. Adil, N. Javaid, M. N. Saqib, M. Shafiq, and J. G. Choi, “Electricity theft detection using supervised learning techniques on smart meter data,” Sustain., Vol.12, No.19, pp.1–25, 2020.
[3] O. Olaoluwa, “Electricity theft and power quality in Nigeria,” Int. J. Eng. Res., Vol.6, No.6, pp.1180–1184, 2017.
[4] E. U. Haq, C. Pei, R. Zhang, H. Jianjun, and F. Ahmad, “Electricity-theft detection for smart grid security using smart meter data: A deep-CNN based approach,” Energy Reports, Vol.9, pp.634–643, 2023.
[5] S. Fanifosi, S. Ike, E. Buraimoh, and I. E. Davidson, “33kV Distribution Feeder Line Sag and Swell Mitigation using Customized DVR,” in Proceedings of the 5th International Conference on Information Technology for Education and Development: Changing the Narratives Through Building a Secure Society with Disruptive Technologies, ITED 2022, Institute of Electrical and Electronics Engineers Inc., 2022.
[6] R. Din and P. B. Prabadevi, "Data Analyzing using Big Data (Hadoop) in Billing System," International Journal of Computer Sciences and Engineering, Vol.5, No.5, pp.84-88, 2017.
[7] S. Abbas et al., “Improving Smart Grids Security: An Active Learning Approach for Smart Grid-Based Energy Theft Detection,” IEEE Access, Vol.12, pp.1706–1717, 2024.
[8] R. Yadav and Y. Kumar, “Detection of non-technical losses in electric distribution network by applying machine learning and feature engineering,” J. Eur. des Syst. Autom., Vol.54, No.3, pp.487–493, 2021.
[9] L. D. Soares, A. de S. Queiroz, G. P. López, E. M. Carreño-Franco, J. M. López-Lezama, and N. Muñoz-Galeano, “BiGRU-CNN Neural Network Applied to Electric Energy Theft Detection,” Electron. 2022, Vol.11, pp.693, 2022.
[10] M. Adil, N. Javaid, U. Qasim, I. Ullah, M. Shafiq, and J. G. Choi, “LSTM and bat-based rusboost approach for electricity theft detection,” Appl. Sci., Vol.10, No.12, 2020.
[11] H. Gul, N. Javaid, I. Ullah, A. M. Qamar, M. K. Afzal, and G. P. Joshi, “Detection of non-technical losses using SOSTLink and Bidirectional Gated Recurrent Unit to Secure Smart Meters,” Appl. Sci., Vol.10, No.9, 2020.
[12] Z. Zheng, Y. Yang, X. Niu, H. N. Dai, and Y. Zhou, “Wide and Deep Convolutional Neural Networks for Electricity-Theft Detection to Secure Smart Grids,” IEEE Trans. Ind. Informatics, Vol.14, No.4, pp.1606–1615, 2018.
[13] G. Lin et al., “Electricity Theft Detection in Power Consumption Data Based on Adaptive Tuning Recurrent Neural Network,” Front. Energy Res., Vol.9, pp.673, 2021.
[14] Petrlik, P. Lezama, C. Rodriguez, R. Inquilla, J. E. Reyna-González, and R. Esparza, “Electricity Theft Detection using Machine Learning,” Int. J. Adv. Comput. Sci. Appl., Vol.13, No.12, pp.420–425, 2022.
[15] Z. A. Khan, M. Adil, N. Javaid, M. N. Saqib, M. Shafiq, and J. G. Choi, “Electricity theft detection using supervised learning techniques on smart meter data,” Sustain., Vol.12, No.19, pp.1–25, 2020.
[16] X. Lu, Y. Zhou, Z. Wang, Y. Yi, L. Feng, and F. Wang, “Knowledge embedded semi-supervised deep learning for detecting non-technical losses in the smart grid,” Energies (Basel), Vol.12, No.18, 2019.
[17] R. Akram et al., “Towards big data electricity theft detection based on improved rusboost classifiers in smart grid,” Energies (Basel), Vol.14, No.23, 2021.
[18] A. Ullah, N. Javaid, A. S. Yahaya, T. Sultana, F. A. Al-Zahrani, and F. Zaman, “A Hybrid Deep Neural Network for Electricity Theft Detection Using Intelligent Antenna-Based Smart Meters,” Wirel Commun Mob Comput, Vol.2021, 2021.
[19] I. Kawoosa, D. Prashar, M. Faheem, N. Jha, and A. A. Khan, “Using machine learning ensemble method for detection of energy theft in smart meters,” IET Generation, Transmission and Distribution, 2023.
[20] S. Li, Y. Han, X. Yao, S. Yingchen, J. Wang, and Q. Zhao, “Electricity Theft Detection in Power Grids with Deep Learning and Random Forests,” J. Electr. Comput. Eng., Vol.2019, 2019.