Full Paper View Go Back

Study of the Efficiency of a Double-chambered Microbial Fuel Cell using Citrobacter sp

Rabiya Sultana1 , Nirab. C. Adhikary2 , Mohan. C. Kalita3 , Narayan. C. Talukdar4 , Mojibur. R. Khan5

Section:Research Paper, Product Type: Isroset-Journal
Vol.6 , Issue.1 , pp.1-9, Feb-2019


CrossRef-DOI:   https://doi.org/10.26438/ijsrbs/v6i1.19


Online published on Feb 28, 2019


Copyright © Rabiya Sultana, Nirab. C. Adhikary, Mohan. C. Kalita, Narayan. C. Talukdar, Mojibur. R. Khan . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Rabiya Sultana, Nirab. C. Adhikary, Mohan. C. Kalita, Narayan. C. Talukdar, Mojibur. R. Khan, “Study of the Efficiency of a Double-chambered Microbial Fuel Cell using Citrobacter sp,” International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.1, pp.1-9, 2019.

MLA Style Citation: Rabiya Sultana, Nirab. C. Adhikary, Mohan. C. Kalita, Narayan. C. Talukdar, Mojibur. R. Khan "Study of the Efficiency of a Double-chambered Microbial Fuel Cell using Citrobacter sp." International Journal of Scientific Research in Biological Sciences 6.1 (2019): 1-9.

APA Style Citation: Rabiya Sultana, Nirab. C. Adhikary, Mohan. C. Kalita, Narayan. C. Talukdar, Mojibur. R. Khan, (2019). Study of the Efficiency of a Double-chambered Microbial Fuel Cell using Citrobacter sp. International Journal of Scientific Research in Biological Sciences, 6(1), 1-9.

BibTex Style Citation:
@article{Sultana_2019,
author = {Rabiya Sultana, Nirab. C. Adhikary, Mohan. C. Kalita, Narayan. C. Talukdar, Mojibur. R. Khan},
title = {Study of the Efficiency of a Double-chambered Microbial Fuel Cell using Citrobacter sp},
journal = {International Journal of Scientific Research in Biological Sciences},
issue_date = {2 2019},
volume = {6},
Issue = {1},
month = {2},
year = {2019},
issn = {2347-2693},
pages = {1-9},
url = {https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1083},
doi = {https://doi.org/10.26438/ijcse/v6i1.19}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i1.19}
UR - https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1083
TI - Study of the Efficiency of a Double-chambered Microbial Fuel Cell using Citrobacter sp
T2 - International Journal of Scientific Research in Biological Sciences
AU - Rabiya Sultana, Nirab. C. Adhikary, Mohan. C. Kalita, Narayan. C. Talukdar, Mojibur. R. Khan
PY - 2019
DA - 2019/02/28
PB - IJCSE, Indore, INDIA
SP - 1-9
IS - 1
VL - 6
SN - 2347-2693
ER -

800 Views    586 Downloads    99 Downloads
  
  

Abstract :
Microbial fuel cells (MFCs) are devices that use bacterial metabolism to convert chemical energy in organic matter to electrical energy from a wide range of organic substrates. In this work, the efficiency of a double-chambered microbial fuel cell was studied by taking Citrobacter sp.as the bacterium of interest, under different operational conditions with sucrose as the carbon source. Both the chambers of the MFC were separated by Nafion i.e. the proton exchange membrane (PEM) while the carbon cloths act as the respective electrodes. The maximum power density measured in this system was found as 125.67 mW/m². In this study, the growth condition of the bacteria was optimized for ambient temperature, which clearly revealed the temperature dependence of the MFC system for production of maximum current and voltage. Moreover, a pH optimization test of the MFC system was performed wherein the performance of the Citrobacter sp. was found to be better at pH 7.4 as compared to other pH values.

Key-Words / Index Term :
Citrobacter, double-chambered microbial fuel cell, proton exchange membrane, electrical power density, exoelectrogenic bacteria

References :
[1] B. E. Logan, K. Rabaey, “Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies”, Science, Vol.337, No.6095, p.686−690, 2012.
[2] B. E. Logan, M. Elimelech, “Membrane-based processes for sustainable power generation using water”, Nature, Vol.488, No.7411, pp.313–319, 2012.
[3] M. H. Do, H. H. Ngo, W. S. Guo, Y. Liu, S. W. Chang, D. D. Nguyen, L. D. Nghiem, and B. J. Ni, “Challenges in the application of microbial fuel cells to wastewater treatment and energy production : A mini review”, Science of the Total Environment, Vol.639, pp. 910–920, 2018.
[4] S. Chaudhuri, D. Lovley, “Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells”, Nat. Biotechnol., Vol.21, No.10, pp.1229, 2003.
[5] Y. Qu, Y. Feng, X. Wang, and B. E. Logan, “Use of a coculture to enable current production by Geobacter sulfurreducens”, Appl. Environ. Microbiol., Vol.78, No.9, pp.3484–3487, 2012.
[6] O. Adelaja, T. Keshavarz, and G. Kyazze, “Enhanced biodegradation of phenanthrene using different inoculum types in a microbial fuel cell ”, Eng. Life Sci., Vol.14, No.2, pp.218–228, 2014.
[7] M. Li, M. Zhou, X. Tian, C. Tan, C. T. Mcdaniel, D. J. Hassett, and T. Gu, “Microbial fuel cell ( MFC ) power performance improvement through enhanced microbial electrogenicity”, Biotechnol. Adv., Vol.36, No.4, pp.1316–1327, 2018.
[8] Z. Du, H. Li, and T. Gu, “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy”, Biotechnol. Adv., Vol.25, No.5, pp.464–482, 2007.
[9] U. Schröder, “Microbial fuel cells and microbial electrochemistry: Into the next century!”, ChemSusChem, Vol.5, No.6, pp.959–961, 2012.
[10] R. A. Bullen, T. C. Arnot, J. B. Lakeman, and F. C. Walsh, “Biofuel cells and their development”, Biosens. Bioelectron., Vol.21, No.11, pp.2015–2045, 2006.
[11] A. E. Franks, K. P. Nevin, “Microbial fuel cells, a current review”, Energies, Vol.3, No.5, pp.899–919, 2010.
[12] S. Karmakar, K. Kundu, and S. Kundu, “Design and Development of Microbial Fuel cells”, Curr. Res., pp.1029–1034, 2010.
[13] K. Rabaey, G. Lissens, S. D. Siciliano, and W. Verstraete, “A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency”, Biotechnol. Lett., Vol.25, No.18, pp. 1531–1535, 2003.
[14] H. Liu, S. Cheng, and B. E. Logan, “Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell”, Environ. Sci. Technol., Vol.39, No.2, pp.658–662, 2005.
[15] K. Rabaey, W. Verstraete, “Microbial fuel cells: Novel biotechnology for energy generation”, Trends Biotechnol., Vol.23, No.6, pp.291–298, 2005.
[16] K. Scott, C. Murano, “Microbial fuel cells utilising carbohydrates”, J. Chem. Technol. Biotechnol., Vol.82, pp.92-100, 2007.
[17] B. C. Jong, P. W. Y. Liew, M. L. Juri, B. H. Kim, A. Z. M. Dzomir, K. W. Leo, and M. R. Awang, “Performance and microbial diversity of palm oil mill effluent microbial fuel cell”, Letters in Applied Microbiology, pp.660–667, 2011.
[18] S. Ishii, B. E. Logan, and Y. Sekiguchi, “Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell”, Appl. Microbiol. Biotechnol., Vol.94, pp.1087−1094, 2012.
[19] R. Kumar, L. Singh, A. W. Zularisam, and F. I. Hai, “Microbial fuel cell is emerging as a versatile technology : a review on its possible applications , challenges and strategies to improve the performances”, Int. J. Energy Res., pp.369–394, 2018.
[20] J. R. Kim, B. Min, and B. E. Logan, “Evaluation of procedures to acclimate a microbial fuel cell for electricity production”, Appl. Microbiol. Biotechnol., Vol.68, No.1, pp.23–30, 2005.
[21] B. E. Logan, “Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments”, ChemSusChem, Vol.5, No.6, pp.988–994, 2012.
[22] H. Liu, R. Ramnarayanan and B.E. Logan, “Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell”, Environ. Sci. Technol. Vol.38, No.7, pp.2281−2285, 2004.
[23] J. E. Mink, J. P. Rojas, B. E. Logan, and M. M. Hussain, “Vertically Grown Multiwalled Carbon Nanotube Anode and Nickel Silicide Integrated High Performance Microsized (1.25 μ L) Microbial Fuel Cell”, Nano Letters, Vol.12, pp.791−795, 2012.
[24] G. C. Gil, I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim, “Operational parameters affecting the performance of a mediator-less microbial fuel cell”, Biosens. Bioelectron., Vol. 18, pp.327–334, 2003.
[25] B. E. Logan, “Exoelectrogenic bacteria that power microbial fuel cells”, Nat. Rev. Microbiol., Vol.7, pp.375–381, 2009.
[26] B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray, B. Little, J. C. Biffinger, and J. M. Jones-Meehan, “High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10”, Environ. Sci. Technol., Vol.40, pp.2629-2634, 2006.
[27] F. Du, B. Xie, W. Dong, B. Jia, K. Dong, and H. Liu, “Continuous flowing membraneless microbial fuel cells with separated electrode chambers”, Bioresour. Technol., Vol.102, No.19, pp. 8914–8920, 2011.
[28] M. M. Ghangrekar and V. B. Shinde, “Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production”, Bioresour. Technol., Vol.98, No.15, pp.2879–2885, 2007.
[29] Y. Choi, E. Jung, H. Park, S. R. Paik, S. Jung, and S. Kim, “Construction of Microbial Fuel Cells Using Thermophilic Microorganisms , Bacillus licheniformis and Bacillus thermoglucosidasius”, Bioresour. Technol., Vol.25, No.6, pp.813–818, 2004.
[30] L. Ren, Y. Ahn, and B. E. Logan, “A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment”, Environ. Sci. Technol., Vol.48, pp.4199−4206, 2014.
[31] B. H. Kim, I. S. Chang, and G. M. Gadd, “Challenges in microbial fuel cell development and operation”, Appl. Microbiol. Biotechnol., Vol.76, No.3, pp.485–494, 2007.
[32] C. Chen, T. Tsai, P. Wu, S. Tsao, and Y. Huang, “ Selection of electrogenic bacteria for microbial fuel cell in removing Victoria blue R from wastewater”, Toxic / Hazardous Substances and Environmental Engineering, Vol.4529, No.October, 2017.
[33] M. Li, S. Zhou, Y. Xu, Z. Liu, F. Ma, L. Zhi, and X. Zhou, “Simultaneous Cr ( VI ) reduction and bioelectricity generation in a dual chamber microbial fuel cell”, Chem. Eng. J., Vol.334, No. November 2017, pp.1621–1629, 2018.
[34] X. Li, G. Liu, S. Sun, F. Ma, S. Zhou, and J. Kee, “Power generation in dual chamber microbial fuel cells using dynamic membranes as separators”, Energy Convers. Manag., Vol.165, No. March, pp.488–494, 2018.
[35] B. E. Logan and J. M. Regan, “Microbial Fuel Cells—Challenges and Applications”, Environ. Sci. Technol., Vol.40, No.17, pp.5172–5180, 2006.
[36] J. Sambrook and R.W. Russell, “Molecular cloning: A laboratory manual, 3rd ed”, Cold spring harbor laboratory press, cold spring harbor, N.Y. 2001
[37] E. Thokchom and M. C. Kalita, “Isolation , screening , characterization , and selection of superior rhizobacterial strains as bioinoculants for seedling emergence and growth promotion of Mandarin orange (Citrus reticulata Blanco)”, Can J Microbiol, Vol.60, pp.85–92., 2014.
[38] M. G. George, “Bergey’s manual of systematic bacteriology, Vol 2. The Proteobacteria: Part B the Gammaproteobacteria 2nd edn.”, Springer, New York, pp.651, 2005
[39] K. Rabaey, J. Rodríguez, L. L. Blackall, J. Keller, P. Gross, D. Batstone, W. Verstraete, and K. H. Nealson, “Microbial ecology meets electrochemistry: electricity-driven and driving communities”, ISME J., Vol.1, No.1, pp.9–18, 2007.
[40] S. Xu, H. Liu, “New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell”, J. Appl. Microbiol., Vol.111, No.5, pp.1108–1115, 2011.
[41] S. Ishii, Y. Hotta, and K. Watanabe, “Methanogenesis versus Electrogenesis: Morphological and Phylogenetic Comparisons of Microbial Communities”, Biosci. Biotechnol. Biochem., Vol.72, No.2, pp.286–294, 2008.
[42] I. A. Ieropoulos, J. Greenman, C. Melhuish, and J. Hart, “Comparative study of three types of microbial fuel cell”, Enzyme Microb. Technol., Vol.37, No.2, pp.238–245, 2005.
[43] Z.Y. Ren, T.E. Ward, J.M. Regan, “Electricity production from cellulose in a microbial
fuel cell using a defined binary culture”, Environ. Sci. Technol., Vol.41, pp.4781–4786, 2007.
[44] M. F. Tsuchiya, “Ion transport in prokaryotes”, Academic Press, San Diego, pp.327-332, 1987.
[45] S. Puig, M. Serra, M. Coma, M. Cabré, M. D. Balaguer, and J. Colprim, “Effect of pH on nutrient dynamics and electricity production using microbial fuel cells”, Bioresour. Technol., Vol.101, No. 24, pp.9594–9599, 2010.
[46] Y. Yuan, B. Zhao, S. Zhou, S. Zhong, and L. Zhuang, “Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells”, Bioresour. Technol., Vol.102, No.13, pp.6887–6891, 2011.
[47] M. Behera, M.M. Ghangrekar,“Performance of microbial fuel cells in response to change in sludge loading rate at different anodic feed pH”, Bioresour. Technol., Vol.100, pp.5114–5121, 2009.
[48] Y. Liu, V. Climent, A. Berná, and J. M. Feliu, “Effect of Temperature on the Catalytic Ability of Electrochemically Active Biofilm as Anode Catalyst in Microbial Fuel Cells”, Electroanalysis, Vol. 23, No.2, pp.387–394, 2011.
[49] U.F.J. Meeranayak, C. T. Shivasharana, “Competitive and Economically Feasible Cell Wall Disruption Techniques for Algal Biofuel Extraction”, Int. Journal of Scientific Research in Biological Sciences, Vol.5, Issue.6, pp.121-126, 2018

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation