Full Paper View Go Back

Rhizobacterial isolates of Capsicum chinense inhibited fungal pathogen Rhizoctonia solani

Phazna Devi T.A.1 , Dinabandhu Sahoo2 , Indira Devi S.3 , Kalita M.C.4 , Aravind Setti5

Section:Research Paper, Product Type: Isroset-Journal
Vol.6 , Issue.1 , pp.112-117, Feb-2019


CrossRef-DOI:   https://doi.org/10.26438/ijsrbs/v6i1.112117


Online published on Feb 28, 2019


Copyright © Phazna Devi T.A., Dinabandhu Sahoo, Indira Devi S., Kalita M.C., Aravind Setti . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Phazna Devi T.A., Dinabandhu Sahoo, Indira Devi S., Kalita M.C., Aravind Setti, “Rhizobacterial isolates of Capsicum chinense inhibited fungal pathogen Rhizoctonia solani,” International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.1, pp.112-117, 2019.

MLA Style Citation: Phazna Devi T.A., Dinabandhu Sahoo, Indira Devi S., Kalita M.C., Aravind Setti "Rhizobacterial isolates of Capsicum chinense inhibited fungal pathogen Rhizoctonia solani." International Journal of Scientific Research in Biological Sciences 6.1 (2019): 112-117.

APA Style Citation: Phazna Devi T.A., Dinabandhu Sahoo, Indira Devi S., Kalita M.C., Aravind Setti, (2019). Rhizobacterial isolates of Capsicum chinense inhibited fungal pathogen Rhizoctonia solani. International Journal of Scientific Research in Biological Sciences, 6(1), 112-117.

BibTex Style Citation:
@article{T.A._2019,
author = {Phazna Devi T.A., Dinabandhu Sahoo, Indira Devi S., Kalita M.C., Aravind Setti},
title = {Rhizobacterial isolates of Capsicum chinense inhibited fungal pathogen Rhizoctonia solani},
journal = {International Journal of Scientific Research in Biological Sciences},
issue_date = {2 2019},
volume = {6},
Issue = {1},
month = {2},
year = {2019},
issn = {2347-2693},
pages = {112-117},
url = {https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1097},
doi = {https://doi.org/10.26438/ijcse/v6i1.112117}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i1.112117}
UR - https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1097
TI - Rhizobacterial isolates of Capsicum chinense inhibited fungal pathogen Rhizoctonia solani
T2 - International Journal of Scientific Research in Biological Sciences
AU - Phazna Devi T.A., Dinabandhu Sahoo, Indira Devi S., Kalita M.C., Aravind Setti
PY - 2019
DA - 2019/02/28
PB - IJCSE, Indore, INDIA
SP - 112-117
IS - 1
VL - 6
SN - 2347-2693
ER -

555 Views    175 Downloads    101 Downloads
  
  

Abstract :
Umorok (Capsicum chinense) is a commercially important chilli plant of Northeastern India. To improve the overall growth and health of the plant we explore the rhizosphere bacteria associated with the plant through serial dilution and pure culture method from three different growth stages juvenile, flowering and fruiting stage. The isolated rhizobacteria were then screened for their biocontrol enzyme activities like cellulose, protease and chitinase, and the potential isolates were molecular characterized using 16S rRNA gene sequencing. The identified microorganism were then studied for its antagonism assay against the fungal pathogen Rhizoctonia solani using dual culture method. The isolates which showed the highest antagonism were selected and treated with the pathogen infected Umorok plant and measured the growth indicating traits in the greenhouse experiment. During the molecular characterization of the rhizobacteria, 127 novel strains were identified. Five bacterial phyla were observed in the three growth stages, and gammaproteobacteria were predominantly present among them. Seven potential rhizobacteria were selected from the diverse list of rhizobacteria showing the biocontrol and antagonism assays. Umorok was infected with plant pathogen R. solani and treated with the selected rhizobacteria to measure the plant growth. The findings confirmed that Lysobacter enzymogenesis competitively inhibited the R. solani and significantly improved the shoot and root system.

Key-Words / Index Term :
Rhizobacteria, Umorok, Antagonism, Molecular characterization, Rhizoctonia solani

References :
[1]. Abdeljalil N, Renault D, Gerbore J, Vallance J, Rey P, Daami-remadi M. Comparative Efficacy of Three Tomato-Associated Rhizobacteria used Singly or in Combination in Suppressing Rhizoctonia Root Rot and Enhancing Tomato Growth. Microb Biochem Technol. OMICS International; 2016;8: 110–119. doi:10.4172/1948-5948.1000272
[2]. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, et al. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. Frontiers Media SA; 2013;4: 356. doi:10.3389/fpls.2013.00356
[3]. Syed Ab Rahman SF, Singh E, Pieterse CMJ, Schenk PM. Emerging microbial biocontrol strategies for plant pathogens. Plant Science. Elsevier; 2018. pp. 102–111. doi:10.1016/j.plantsci.2017.11.012
[4]. Lugtenberg B, Rozen DE, Kamilova F. Wars between microbes on roots and fruits. F1000Research. Faculty of 1000 Ltd; 2017;6: 343. doi:10.12688/f1000research.10696.1
[5]. Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiol Mol Biol Rev. American Society for Microbiology; 2017;81: e00066-16. doi:10.1128/MMBR.00066-16
[6]. Compant S, Duffy B, Nowak J, Clément C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology. American Society for Microbiology (ASM); 2005. pp. 4951–4959. doi:10.1128/AEM.71.9.4951-4959.2005
[7]. Jeeatid N, Techawongstien S, Suriharn B, Chanthai S, Bosland PW, Techawongstien S. Influence of water stresses on capsaicinoid production in hot pepper (Capsicum chinense Jacq.) cultivars with different pungency levels. Food Chem. Elsevier; 2018;245: 792–797. doi:10.1016/j.foodchem.2017.11.110
[8]. Loizzo MR, Pugliese A, Bonesi M, Menichini F, Tundis R. Evaluation of chemical profile and antioxidant activity of twenty cultivars from Capsicum annuum, Capsicum baccatum, Capsicum chacoense and Capsicum chinense: A comparison between fresh and processed peppers. LWT - Food Sci Technol. Academic Press; 2015;64: 623–631. doi:10.1016/J.LWT.2015.06.042
[9]. Loizzo MR, Bonesi M, Serio A, Chaves-López C, Falco T, Paparella A, et al. Application of nine air-dried Capsicum annum cultivars as food preservative: Micronutrient content, antioxidant activity, and foodborne pathogens inhibitory effects. Int J Food Prop. Taylor & Francis; 2017;20: 899–910. doi:10.1080/10942912.2016.1188310
[10]. Vargas-Hernández M, Torres-Pacheco I, Gautier F, Álvarez-Mayorga B, Cruz-Hernández A, García-Mier L, et al. Influence of hydrogen peroxide foliar applications on in vitro antimicrobial activity in Capsicum chinense Jacq. Plant Biosyst - An Int J Deal with all Asp Plant Biol. Taylor & Francis; 2017;151: 269–275. doi:10.1080/11263504.2016.1168494
[11]. Stipcovich T, Barbero GF, Ferreiro-González M, Palma M, Barroso CG. Fast analysis of capsaicinoids in Naga Jolokia extracts (Capsicum chinense) by high-performance liquid chromatography using fused core columns. Food Chem. Elsevier; 2018;239: 217–224. doi:10.1016/J.FOODCHEM.2017.06.098
[12]. Güler S, Zik B. Effects of capsaicin on ovarian granulosa cell proliferation and apoptosis. Cell Tissue Res. Springer Berlin Heidelberg; 2018; 1–7. doi:10.1007/s00441-018-2803-4
[13]. Deng Y, Huang X, Wu H, Zhao M, Lu Q, Israeli E, et al. Some like it hot: The emerging role of spicy food (capsaicin) in autoimmune diseases. Autoimmunity Reviews. Elsevier; 2016. pp. 451–456. doi:10.1016/j.autrev.2016.01.009
[14]. McCarty MF, DiNicolantonio JJ, O’Keefe JH. Capsaicin may have important potential for promoting vascular and metabolic health. Open Hear. BMJ Publishing Group; 2015;2: e000262. doi:10.1136/openhrt-2015-000262
[15]. Sánchez-Borges CA, Souza-Perera RA, Zúñiga-Aguilar JJ, Shrestha S, Lamour K, Castillo-Aguilar CC. First Report of Phytophthora capsici Causing Damping-off of Capsicum chinense in the Yucatan Peninsula. Plant Dis. Plant Disease; 2015;100: 1247. doi:10.1094/PDIS-09-15-1047-PDN
[16]. de Oliveira CVS, Matos KS, De Albuquerque DMC, Hanada RE, Da Silva GF. Identification of Colletotrichum isolates from Capsicum chinense in Amazon. Genet Mol Res. Genetics and Molecular Research; 2017;16. doi:10.4238/gmr16029601
[17]. Beneduzi A, Ambrosini A, Passaglia LMP. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology. Sociedade Brasileira de Genética; 2012. pp. 1044–1051. doi:10.1590/S1415-47572012000600020
[18]. Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol. Springer; 2017;33: 197. doi:10.1007/s11274-017-2364-9
[19]. Sundaramoorthy S, Raguchander T, Ragupathi N, Samiyappan R. Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biol Control. Academic Press; 2012;60: 59–67. doi:10.1016/J.BIOCONTROL.2011.10.002
[20]. Priya S, Upadhyay JP. Antagonistic Potential of Trichoderma harzianum against Rhizoctonia solani Causing Banded Leaf and Sheath Blight of Maize. IntJCurrMicrobiolAppSci. 2017;6: 886–890. doi:10.20546/ijcmas.2017.610.106
[21]. Selva Kumar S, Ram Krishna Rao M, Deepak Kumar R, Panwar S, Prasad CS. Biocontrol by plant growth promoting rhizobacteria against black scurf and stem canker disease of potato caused by Rhizoctonia solani. Arch Phytopathol Plant Prot. Taylor & Francis; 2013;46: 487–502. doi:10.1080/03235408.2012.745054
[22]. Aneja KR. Experiment in Microbiology, Plant Pathology and Biotechnology, 4th Edn. New Age International Publishers; 2003.
[23]. Agrawal, T., and Kotasthane AS. A simple medium for screening chitinase activity of Trichoderma spp. In: Methods of Molecular Identification and laboratory Protocols (International Subcommission on Trichoderma and Hypocrea Taxonomy (ISTH)) [Internet]. 2009. Available: http://www.isth.info/methods/method.php?method_id=11.
[24]. Kazanas N. Proteolytic Activity of Microorganisms Isolated from Freshwater Fish. Appl Microbiol. 1968;16: 128–132.
[25]. Bjelić D, Marinković J, Tintor B, Mrkovački N. Antifungal and Plant Growth Promoting Activities of Indigenous Rhizobacteria Isolated from Maize (Zea mays L.) Rhizosphere. Commun Soil Sci Plant Anal. Taylor & Francis; 2018;49: 88–98. doi:10.1080/00103624.2017.1421650
[26]. Avinash TS, Rai R V. Antifungal Activity of Plant Growth Promoting Rhizobacteria Against Fusarium oxysporum and Phoma sp. of Cucurbitaceae. Microbial Diversity and Biotechnology in Food Security. New Delhi: Springer India; 2014. pp. 257–264. doi:10.1007/978-81-322-1801-2_23
[27]. Sarbadhikary SB, Mandal NC. Field application of two plant growth promoting rhizobacteria with potent antifungal properties. Rhizosphere. Elsevier; 2017;3: 170–175. doi:10.1016/j.rhisph.2017.04.014
[28]. Mubarik NR, Mahagiani I, Anindyaputri A, Santoso S, Rusmana I. Chitinolytic bacteria isolated from chili rhizosphere: Chitinase characterization and its application as biocontrol for whitefly (Bemisia tabaci genn.). Am J Agric Biol Sci. 2010;5: 430–435. doi:10.3844/ajabssp.2010.430.435
[29]. Köberl M, Dita M, Martinuz A, Staver C, Berg G. Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. Sci Rep. Nature Publishing Group; 2017;7: 45318. doi:10.1038/srep45318
[30]. Inceoǧlu Ö, Al-Soud WA, Salles JF, Semenov A V., van Elsas JD. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. Gilbert JA, editor. PLoS One. Public Library of Science; 2011;6: e23321. doi:10.1371/journal.pone.0023321
[31]. Dinesh R, Anandaraj M, Kumar A, Bini YK, Subila KP, Aravind R. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol Res. Urban & Fischer; 2015;173: 34–43. doi:10.1016/j.micres.2015.01.014
[32]. Gómez Expósito R, Postma J, Raaijmakers JM, De Bruijn I. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils. Front Microbiol. Frontiers Media SA; 2015;6: 1243. doi:10.3389/fmicb.2015.01243

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation