Full Paper View Go Back
Understanding the impact of Bacillus thuringiensis proteins on non-target organisms
Tanvi Singh1 , Yamini Tiwari2 , Garima Awasthi3
Section:Review Paper, Product Type: Isroset-Journal
Vol.6 ,
Issue.2 , pp.169-176, Apr-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i2.169176
Online published on Apr 30, 2019
Copyright © Tanvi Singh, Yamini Tiwari, Garima Awasthi . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Tanvi Singh, Yamini Tiwari, Garima Awasthi, “Understanding the impact of Bacillus thuringiensis proteins on non-target organisms,” International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.2, pp.169-176, 2019.
MLA Style Citation: Tanvi Singh, Yamini Tiwari, Garima Awasthi "Understanding the impact of Bacillus thuringiensis proteins on non-target organisms." International Journal of Scientific Research in Biological Sciences 6.2 (2019): 169-176.
APA Style Citation: Tanvi Singh, Yamini Tiwari, Garima Awasthi, (2019). Understanding the impact of Bacillus thuringiensis proteins on non-target organisms. International Journal of Scientific Research in Biological Sciences, 6(2), 169-176.
BibTex Style Citation:
@article{Singh_2019,
author = {Tanvi Singh, Yamini Tiwari, Garima Awasthi},
title = {Understanding the impact of Bacillus thuringiensis proteins on non-target organisms},
journal = {International Journal of Scientific Research in Biological Sciences},
issue_date = {4 2019},
volume = {6},
Issue = {2},
month = {4},
year = {2019},
issn = {2347-2693},
pages = {169-176},
url = {https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1310},
doi = {https://doi.org/10.26438/ijcse/v6i2.169176}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i2.169176}
UR - https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1310
TI - Understanding the impact of Bacillus thuringiensis proteins on non-target organisms
T2 - International Journal of Scientific Research in Biological Sciences
AU - Tanvi Singh, Yamini Tiwari, Garima Awasthi
PY - 2019
DA - 2019/04/30
PB - IJCSE, Indore, INDIA
SP - 169-176
IS - 2
VL - 6
SN - 2347-2693
ER -
Abstract :
Bacillus thuringiensis (Bt) is a spore-forming, gram-positive, aerobic, rod-shaped bacterium. During sporulation, Bt produces proteinaceous crystals called Cry proteins that are lethal to many insects’ species, so are commonly used as biological pesticide. Transgenic Bt crops are genetically altered to express insecticidal toxins that cause fatality of a number of general agricultural pests. The insecticidal toxins formed by Bt crops possess narrow range of toxicity and therefore less non-target impacts as compared to conventional insecticides. A decrease in the amount and regularity of insecticide applications are financially advantageous. In numerous regions of the world, insecticide inputs have been significantly reduced because of Bt. The use of Bt crop technology might help in worldwide food security by escalating the amount and steadiness of crop yields. Though impact of Bt toxin on non-targeted organism is a serious issue yet no conclusion could still be drawn from several studies. This review summarizes the benefits of Bt crops including the impact on non-targeted organisms and Bt toxins having potential risks with respect to the environment.
Key-Words / Index Term :
Bacillus thuringiensis, Bt toxin, Cry proteins, environment, non-target organisms
References :
[1] L. Palma, D. Muñoz, C. Berry, J. Murillo, P. Caballero, “Bacillus thuringiensis toxins: an overview of their biocidal activity”, Toxins, Vol. 6, Issue.12, pp. 3296-3325, 2014.
[2] S.A. López-Pazos, J. Cerón, “Biological Activity of Insecticidal Toxins: Structural Basis, Site-Directed Mutagenesis and Perspectives. In: Figurski D. (eds) Genetic Manipulation of DNA and Protein-Examples from Current Research”, InTech, 2013. DOI: 10.5772/55895
[3] C. Deng, Q. Peng, F. Song, D. Lereclus, “Regulation of cry gene expression in Bacillus thuringiensis”, Toxins, Vol. 6, Issue. 7, pp. 2194-2209, 2014.
[4] R. Arora, “Microbial control in insect pest management: achievements and challenges, Biological and molecular approaches in pest management”, Scientific Publishers, Jodhpur, pp. 97-152, 2015.
[5] K.S. Rao, D. Pattanayak and R. Sreevathsa, “Bt Insecticidal Crystal Proteins: Role in Insect Management and Crop Improvement”, In Biocontrol of Lepidopteran Pests, pp. 53-70. Springer, Cham, 2015.
[6] N. Crickmore, D.R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum and D.H. Dean, “Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins”, Microbiol Mol Biol Rev, Vol. 62, Issue. 3, pp. 807-813, 1998.
[7] M. Soberón, J.A. López-Díaz, A. Bravo, “Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms”, Peptide,. Vol. 41, pp. 87-93, 2013.
[8] J.D. Li, J. Carroll, D.J. Ellar, “Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5Å resolution”, Nature, Vol. 353, pp. 815-821, 1991.
[9] N. Galitsky, V. Cody, A. Wojtczak, D. Ghosh, J.R. Luft, W. Pangborn, L. English, “Structure of the insecticidal bacterial δ-endotoxin Cry3Bb1 of Bacillus thuringiensis”, Acta Crystallogr D Biol Crystallogr, Vol. 57, Issue. 8, pp. 1101-1109, 2001.
[10] S. Guo, S. Ye, Y. Liu, L. Wei, J. Xue, H. Wu, F. Song, J. Zhang, X. Wu, D. Huang, Z. Rao, “Crystal structure of Bacillus thuringiensis Cry8Ea1: An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela”, J Struct Biol, Vol. 168, Issue. 2, pp. 259-266, 2009.
[11] P. Boonserm, P. Davis, D.J. Ellar, J. Li, “Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications”, J Mol Biol, Vol. 348, Issue. 2, pp. 363-382, 2005.
[12] P. Boonserm, M. Mo, C. Angsuthanasombat, J. Lescar, “Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution”,J Bacteriol, Vol. 188, Issue. 9, pp. 3391-3401, 2006.
[13] P. Grochulski, L. Masson, S. Borisova, M. Pusztai-Carey, J.L. Schwartz, R. Brousseau, M. Cygler, “Bacillus thuringiensis CrylA (a) Insecticidal Toxin: Crystal Structure and Channel Formation”, J Mol Biol, Vol. 254, Issue. 3, pp. 447-464, 1995.
[14] R.J. Morse, T. Yamamoto, R.M. Stroud, “Structure of Cry2Aa suggests an unexpected receptor binding epitope”, Structure, Vol. 9, Issue. 5, pp. 409-417, 2001.
[15] J. Li, P.A. Koni, D.J. Ellar, “Structure of the mosquitocidal d-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation”, J Mol Biol, Vol. 257, Issue. 1, pp. 129–152, 1996.
[16] S. Cohen, O. Dym, S. Albeck, E. Ben-Dov, R. Cahan, M. Firer, A. Zaritsky, “High-resolution crystal structure of activated Cyt2Ba monomer from Bacillus thuringiensis subsp. Israelensis”, J Mol Biol, Vol. 380, Issue. 5, pp. 820-827, 2008.
[17] A. Bravo, S.S. Gill, M. Soberon, “Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control”, Toxicon, Vol. 49, Issue. 4, pp. 423-435, 2007.
[18] Z. George, N. Crickmore, “Bacillus thuringiensis applications in agriculture, In Bacillus thuringiensis biotechnology”, pp. 19-39. Springer, Dordrecht, 2012.
[19] C.R. Pigott, D.J. Ellar, “Role of receptors in Bacillus thuringiensis crystal toxin activity”, Microbiol Mol Biol Rev, Vol. 71, Issue. 2, pp. 255-281, 2007.
[20] R.A. Ibrahim, D.M. Shawer, “Transgenic Bt-plants and the future of crop protection (an overview)”, International Journal of Agricultural and Food Research, Vol. 3, Issue. 1, pp. 14-40, 2014.
[21] G. Sanahuja, R. Banakar, R.M. Twyman, T. Capell, P. Christou, “Review article Bacillus thuringiensis: a century of research, development and commercial applications”, Plant Biotechnol J, Vol. 9, Issue. 3, pp. 283–300, 2011.
[22]. M.S. Koch, J.M. Ward, S. L. Levine, J.A. Baum, J.L. Vicini, B.G. Hammond, “The food and environmental safety of Bt crops”, Front Plant Sci, Vol. 6, Issue. 283, 2015.
[23]. R. Schünemann, N. Knaak, L.M. Fiuza, “Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture”, ISRN microbiology, Vol. 201, pp. 1-12, 2014.
[24]. A.L. Melo, V.T. Soccol, C.R. Soccol, “Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review”, Critica Rev Biotechnol, Vol. 36, Issue. 2, pp. 317-326, 2016.
[25]. A.S. Rathore, R.D. Gupta, “Chitinases from bacteria to human: properties, applications, and future perspectives”, Enzyme research, Vol. 2015, pp. 1-8, 2015.
[26]. D. Bhattacharya, A. Nagpure, R.K. Gupta, “Bacterial chitinases: properties and potential”, Critica Rev Biotechnol, Vol. 27, Issue.1, pp. 21-28, 2007.
[27]. F. Saleem, U. Nisar, A. Younas, F. Jabeen, J.I. Qazi, N. Khursheed, N. Munir, S. Naz and A.R. Shakoori, “Molecular characterisation of Bacillus chitinase for bioconversion of chitin waste”, Nat Prod Res, Vol. 30, Issue. 6, pp. 720-723, 2016.
[28]. E. A Veliz, P. Martínez-Hidalgo, A. M Hirsch, “Chitinase-producing bacteria and their role in biocontrol”, AIMS Microbiology, Vol. 3, Issue. 3, pp. 689-705, 2017.
[29]. A. Oyeleye, Y.M. Normi, “Chitinase: diversity, limitations, and trends in engineering for suitable applications”, Biosci Rep, Vol. 38, Issue. 4, 2018.
[30]. C. Then, A. Bauer-Panskus, “Possible health impacts of Bt toxins and residues from spraying with complementary herbicides in genetically engineered soybeans and risk assessment as performed by the European Food Safety Authority EFSA”, Environmental Sciences Europe, Vol. 29, Issue. 1, 2017.
[31]. L.L. Wolfenbarger, S.E. Naranjo, J.G. Lundgren, R.J. Bitzer, L.S. Watrud, “Bt crop effects on functional guilds of non-target arthropods: A meta-analysis”, PLoS One, Vol. 3, Issue. 5, e2118, 2008.
[32]. J. A. Peterson, J.G. Lundgren, J.D. Harwood, “Interactions of transgenic Bacillus thuringiensis insecticidal crops with spiders (Araneae)” J Arachnol, Vol. 39, Issue. 1, pp. 1–21, 2011.
[33]. J. A. Peterson, J. J. Obrycki, J. D. Harwood, “Bacillus thuringiensis: Transgenic Crops”, Encyclopedia of Environmental Management CRC Press, pp. 307–320, 2013.
[34]. M. Mendehlson, J. Kough, Z. Vaituzis, K. Matthews, “Are Bt crops safe?”, Nat Biotechnol, Vol. 21, Issue. 9, pp. 1003–1009, 2003.
[35]. S. Holm, “When They Don`t Want Your Corn: The Most Effective Tort Claims for Plaintiffs Harmed by Seed Companies Whose Genetically Engineered Seeds Produced More Problems Than Profits”, Hamline L Rev, Vol. 38, pp. 557, 2015.
[36]. T. Ishii, M. Araki, “Consumer acceptance of food crops developed by genome editing”, Plant cell rep, Vol. 35, Issue. 7, pp. 1507-1518, 2016.
[37]. M. Robischon, “Potential Environmental Impact of Insect-Resistant Transgenic Trees”, In: Biosafety of Forest Transgenic Trees. Springer, Dordrecht, pp. 173-194, 2016.
[38]. A.G. Enikeev, T.V. Kopytina, L.A. Maximova, J.V. Nurminskaya, S.G. Shvetsov, “Implications of plants genetic transformation assessed by geneticist, biochemist and physiologist”, J stress physiol biochem, Vol. 11, Issue. 4, 2015.
[39]. M. Faraji, L.L. Fonseca, L. Escamilla-Treviño, J. Barros-Rios, N.L. Engle, Z.K. Yang, T.J. Tschaplinski, R.A. Dixon, E.O. Voit, “A dynamic model of lignin biosynthesis in Brachypodium distachyon”, Biotechnol Biofuels, Vol. 11, Issue. 1, pp. 253, 2018.
[40]. E.G. Virla, M. Casuso, E.A. Frias, “A preliminary study on the effects of a transgenic corn event on the non-target pest Dalbulus maidis (Hemiptera: Cicadellidae)”, Crop Prot, Vol. 29, Issue. 6, pp. 635–638, 2010.
[41]. A. Hilbeck, R. Binimelis, N. Defarge, R. Steinbrecher, A. Székács, F. Wickson, M. Antoniou, P.L. Bereano, E.A. Clark, M. Hansen, E. Novotny, “No scientific consensus on GMO safety”, Environ Sci Eur, Vol. 27, Issue. 1, pp. 4, 2015.
[42]. D.C. Resende, S.M. Mendes, R.C. Marucci, A.D.C. Silva, M.M. Campanha, J.M. Waquil, “Does Bt maize cultivation affect the non-target insect community in the agro ecosystem?”, Rev Bras Entomol. Vol. 60, Issue. 1, pp. 82-93, 2016.
[43]. J. Van Den Berg, J.F. Warren, H. Du Plessis, “The potential effect of Bt maize on Chrysoperla pudica (Neuroptera: Chrysopidae)”, Environ entomol, Vol. 46, Issue 2, pp. 413-417, 2017.
[44]. J.C. Tian, X.P. Wang, Y. Chen, J. Romeis, S.E. Naranjo, R.L. Hellmich, P. Wang, A.M. Shelton, “Bt cotton producing Cry1Ac and Cry2Ab does not harm two parasitoids, Cotesia marginiventris and Copidosoma floridanum”, Sci rep, Vol. 8, Issue. 1, pp. 307, 2018.
[45]. M.T. Renzi, M. Amichot, D. Pauron, S. Tchamitchian, J.L. Brunet, A. Kretzschmar, S. Maini, L.P. Belzunces, “Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined”, Ecotoxicol environ saf, Vol. 127, pp. 205-213, 2016.
[46]. A. Lang, M. Otto, “Feeding behaviour on host plants may influence potential exposure to Bt maize pollen of Aglais Urticae larvae (Lepidoptera, Nymphalidae)”, Insects, Vol. 6, Issue. 3, pp. 760-771, 2015.
[47]. T. Bøhn, G.L. Lövei, “Complex outcomes from insect and weed control with transgenic plants: ecological surprises?”, Front Environ Sci, Vol. 5, pp.60, 2017.
[48]. P.B. Woodbury, A. DiTommaso, J. Thies, M. Ryan, J. Losey, “Effects of transgenic crops on the environment”, In: Coll M, Wajnberg E. (eds) Environmental pest management: challenges for agronomists, ecologists, economists and policymakers. 1st edn. Wiley, Hoboken, pp. 131, 2017.
[49]. D. Ndolo, J. Songa, G. Lövei, “Tri-Trophic Impacts of Bt-Transgenic Maize on Parasitoid Size and Fluctuating Asymmetry in Native vs. Novel Host-Parasitoid Interactions in East Africa”, Insects, Vol. 9, Issue. 2, pp. 38, 2018.
[50]. G.O. Magalhães, A.M. Vacari, V.L. Laurentis, S.A. De Bortoli, R.A. Polanczyk , “Interactions of Bacillus thuringiensis bioinsecticides and the predatory stink bug Podisus nigrispinus to control Plutella xylostella”, J Appl Entomol, Vol. 139, Issue. 1-2, pp. 123-133, 2015.
[51]. Y. Wang, Y. Liu, J. Zhang, N. Crickmore, F. Song, J. Gao, C. Shu, “Cry78Aa, a novel Bacillus thuringiensis insecticidal protein with activity against Laodelphax striatellus and Nilaparvata lugens”, J Invertebr Pathol, Vol. 158, pp. 1-5, 2018.
[52]. EPA (Environmental Protection Agency) “Biopesticides Registration Action Document––Bacillus thuringiensis Plant-incorporated Protectants”, U.S. Environmental Protection Agency, Washington, DC. pp. 481, 2001.
[53]. D. Babendreier, D. Joller, J. Romeis, F. Bigler, F. Widmer, “Bacterial community structures in honeybee intestines and their response to two insecticidal proteins”, FEMS Microbiol. Ecol. Vol. 59, pp. 600–610, 2007.
[54]. R. Rose, G.P. Dively, “Effects of insecticide treated and lepidopteran-active Bt transgenic sweet corn on the abundance and diversity of arthropods”, Environmental Entomology, Vol. 36, pp. 1254–1268, 2007.
[55]. J.L. Hofs, A.S. Schoeman, J. Pierre, “Diversity and abundance of flower-visiting insects in Bt and non-Bt cotton fields of Maputaland (KwaZulu Natal Province, South Africa)”, . Int. J. Trop. Insect Sci, Vol. 28, pp. 211–219, 2008.
[56]. P. Han, C.Y. Niu, C.L. Lei, J.J. Cui, N. Desneux, “Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L.”, Ecotoxicology Vol. 19, pp. 1612–1619, 2010b.
[57]. P. Han, C.Y. Niu, C.L. Lei, J.J. Cui, N. Desneux, “Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L.” Ecotoxicology, Vol. 19, pp. 1452–1459, 2010a.
[58]. J. J. Duan, D. Teixeira, J. E. Huesing & C. Jiang, “Assessing the risk to nontarget organisms from Bt corn resistant to corn rootworms (Coleoptera: Chrysomelidae): Tier-I testing with Orius insidiosus (Heteroptera: Anthocoridae)”, Environmental Entomology, Vol. 37, Issue. 3, pp. 838-844, 2014.
[59]. L. Niu, Z. Tian, H. Liu, H. Zhou, W. Ma, C. Lei & L. Chen, “Transgenic Bt cotton expressing Cry1Ac/Cry2Ab or Cry1Ac/EPSPS does not affect the plant bug Adelphocoris suturalis or the pollinating beetle Haptoncus luteolus”, Environmental pollution, Vol. 234, pp. 788-793, 2018.
[60]. B.A. Schaal, “Biodiversity, Biotechnology and the Environment”, Biodiversity and the Law: Intellectual Property, Biotechnology and Traditional Knowledge, 2012.
[61]. M. Arshad, H. A. A. Khan, M. A. ur Rehman & N. A. Saeed, “Incidence of insect predators and parasitoids on transgenic Bt cotton in comparison to non-Bt cotton varieties”, Pakistan Journal of Zoology, Vol. 47, Issue. 3, 2015.
[62]. A. G. Viktorov, “Influence of Bt-plants on soil biota and pleiotropic effect of δ-endotoxin-encoding genes”, Russian Journal of Plant Physiology, Vol. 55, Issue. 6, pp. 738-747, 2008.
[63]. L. Hönemann, W. Nentwig, “Are survival and reproduction of Enchytraeus albidus (Annelida: Enchytraeidae) at risk by feeding on Bt-maize litter?” European Journal of Soil Biology, Vol. 45 Issue. 4, pp. 351-355, 2009.
[64]. Y. Y. Bai, R H. Yan, G. Y Ye, F. Huang, D. S. Wangila, J. J. Wang, J. J. et al, “Field response of aboveground non-target arthropod community to transgenic Bt-Cry1Ab rice plant residues in postharvest seasons”. Transgenic research, Vol. 21, Issue. 5, pp. 1023-1032, 2012.
[65]. M. Arias-Martín, M. García, M. J. Luciáñez, F. Ortego, P. Castañera, G. P. Farinós, “Effects of three-year cultivation of Cry1Ab-expressing Bt maize on soil microarthropod communities”. Agriculture, Ecosystems & Environment, Vol. 220, pp. 125-134, 2016.
[66]. Y. Shu, Y. Zhang, H. Zeng, Y. Zhang, J. Wang, “Effects of Cry1Ab Bt maize straw return on bacterial community of earthworm Eisenia fetida.” Chemosphere, Vol. 173, pp. 1-13, 2017.
[67]. O. G. G. Knox, D. B. Nehl, T. Mor, G. N. Roberts, V. V. S. R. Gupta, “Genetically modified cotton has no effect on arbuscular mycorrhizal colonisation of roots.” Field Crops Research, Vol. 109 Issue.1-3, pp. 57-60, 2008.
[68]. A. P. Oliveira, M. E. Pampulha, J. P. Bennett, “A two-year field study with transgenic Bacillus thuringiensis maize: effects on soil microorganisms”. Science of the Total Environment, Vol. 405, Issue.1-3, pp. 351-357, 2008.
[69]. R. Miethling-Graff, S. Dockhorn, C. C. Tebbe, “Release of the recombinant Cry3Bb1 protein of Bt maize MON88017 into field soil and detection of effects on the diversity of rhizosphere bacteria”. European Journal of Soil Biology, Vol. 46, Issue. 1, pp. 41-48, 2010.
[70]. F. Tan, J. Wang, Y. Feng, G. Chi, H. Kong, H. Qiu, S. Wei, “Bt corn plants and their straw have no apparent impact on soil microbial communities” Plant and soil, Vol. 329 Issue. 1-2, pp. 349-364. 2010.
[71]. M. Xie, Y. J. Zhang, D. L. Peng, G. Wu, P. Xu, J. J. Zhao, Z. R. Zhang, “Field studies show no significant effect of a Cry1Ab/Ac producing transgenic cotton on the fungal community structure in rhizosphere soil”. European journal of soil biology, Vol. 73, pp. 69-76. 2016
[72]. L. Zhaolei, B. Naishun, C. Xueping, C. Jun, X. Manqiu, S. Zhiping, F. Changming, et al, “Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities.” Ecotoxicol. Environ. Saf., Vol. 152, pp. 33-41, 2018.
[73]. D. F. Holderbaum, M. Cuhra, F. Wickson, A I. Orth, R. O. Nodari, T. Bøhn, “Chronic responses of Daphnia magna under dietary exposure to leaves of a transgenic (event MON810) Bt-maize hybrid and its conventional near-isoline”. J. Toxicol. Environ. Health, Vol. 78, Issue, 15, pp. 993–10072015.
[74]. S. A. Whiting, M. J. Lydy, “A site‐specific ecological risk assessment for corn‐associated insecticides”. Integrated environmental assessment and management, Vol 11, Issue 3, pp. 445-458, 2015.
[75]. T. Bøhn, C. M. Rover, P. R. Semenchuk, “Daphnia magna negatively affected by chronic exposure to purified Cry-toxins”. Food Chem. Toxicol, Vol. 91, pp. 130–140, 2016
[76]. L. Zhang, R. Guo, Z. Fang, B Liu, “Genetically modified rice Bt-Shanyou63 expressing Cry1Ab/c protein does not harm Daphnia magna.” Ecotoxicol. Environ. Saf., Vol. 132, pp. 196–201, 2016.
[77]. A. Pott, M. Otto, R. Schulz, “Impact of genetically modified organisms on aquatic environments: Review of available data for the risk assessment.” Science of The Total Environment, Vol. 635, Issue. 687-698, 2018.
[78]. Y. L. Li, J. Du, Z. X. Fang, J. You, “Dissipation of insecticidal Cry1Ac protein and its toxicity to nontarget aquatic organisms.” Journal of agricultural and food chemistry, Vol. 61 Issue. 46, pp. 10864-10871, 2013
[79]. C. J. de Vos, M. Swanenburg, “Health effects of feeding genetically modified (GM) crops to livestock animals: A review.” Food and Chemical Toxicology, Vol. 117, pp. 3-12, 2018.
[80]. A. M. Sajjad, A. Yasmeen, S. Ahmad, & U. Sagheer, “Determination of the persistence frequency of different components of the cry1Ac transgene cassette in mammalian tissues”, Journal of International Scientific Publications: Agriculture & Food, Vol. 2, pp. 448-456, 2014.
[81]. A. A. Shahid, S. Bano, S. Khalid, T. R. Samiullah, K. S. Bajwa & M. A. Ali, “Biosafety assessment of transgenic Bt cotton on model animals”, Advancements in Life Sciences, Vol. 3, Issue. 3, pp. 97-108, 2016.
[82]. M. A. Zia, S. A. Jan, Z. K. Shinwari, S. H. Shah & A. T. Khalil, “ Impact of Bt Cotton on Animal Health”, Global Veterinaria, Vol. 14, Issue. 3, pp. 377-381, 2015.
[83] H. Zeng, F. Tan, Y. Shu, Y. Zhang, Feng, Y. & J. Wang, “The Cry1Ab protein has minor effects on the arbuscular mycorrhizal fungal communities after five seasons of continuous Bt maize cultivation”, PloS one, Vol. 10, Issue. 12, e0146041, 2015.
[84] Y. B. Liu, H. Darmency, C. N. Stewart, W. Wei, Z. X. Tang & K. P. Ma, “The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea”, Transgenic research, Vol. 24, Issue. 3, pp. 537-547, 2015.
[85] R. S. Keweshan, G. P. Head & A. J. Gassmann, “Effects of pyramided Bt corn and blended refuges on western corn rootworm and northern corn rootworm (Coleoptera: Chrysomelidae)”, Journal of economic entomology, Vol. 108, Issue. 2, pp. 720-729, 2015.
[86] D. Ferreira Holderbaum, M. Cuhra, F. Wickson, A. I. Orth, R. O. Nodari & T. Bøhn, “Chronic responses of Daphnia magna under dietary exposure to leaves of a transgenic (event MON810) Bt–maize hybrid and its conventional near-isoline”, Journal of Toxicology and Environmental Health, Part A, Vol. 78, Issue. 15, pp. 993-1007, 2015.
[87] Y. Li, X. Zhang, X. Chen, J. Romeis, X. Yin & Y. Peng, “Consumption of Bt rice pollen containing Cry1C or Cry2A does not pose a risk to Propylea japonica (Thunberg)(Coleoptera: Coccinellidae)”, Scientific reports, Vol. 5, pp. 7679, 2015.
[88] P. L. Dai, W. Zhou, J. Zhang, Z. H. Lang, T. Zhou, Q. Wang, et al,. “Effects of Bt cry1Ah corn pollen on immature worker survival and development of Apis cerana cerana”, Journal of Apicultural Research, Vol. 54, Issue. 1, pp. 72-76, 2015.
[89] V. K. Sangode & M. K. Rathod, “Effect of bt cotton on Spodoptera litura fabricius (Lepidoptera: Noctuidae)”, International Journal of Pharmacology & Biological Sciences, Vol. 9, Issue. 1, 2015.
[90] J. Deitloff, M. W. Dunbar, D. A. Ingber, B. E. Hibbard & A. J. Gassmann, “Effects of refuges on the evolution of resistance to transgenic corn by the western corn rootworm, Diabrotica virgifera virgifera LeConte”, Pest management science, Vol. 72, Issue. 1, pp. 190-198, 2016.
[91] Y. Zhao, S. Zhang, J. Y. Luo, C. Y. Wang, L. M. Lv, X. P. Wang, C. L. Lei, et al,. “Bt proteins Cry1Ah and Cry2Ab do not affect cotton aphid Aphis gossypii and ladybeetle Propylea japonica”, Scientific reports, Vol. 6, pp. 20368, 2016.
[92] P. L. Dai, H. R. Jia, L. L. Geng & Q. Y. Diao, “Bt toxin Cry1Ie causes no negative effects on survival, pollen consumption, or olfactory learning in worker honey bees (Hymenoptera: Apidae)”, Journal of economic entomology, Vol. 109, Issue. 3, pp. 1028-1033, 2016.
[93] L. Niu, W. Ma, C. Lei, J. L., Jurat-Fuentes & L. Chen, “Herbicide and insect resistant Bt cotton pollen assessment finds no detrimental effects on adult honey bees”, Environmental Pollution, Vol. 230, pp. 479-485, 2017.
[94] Z. X. Wang, Y. H. Li, K. L. He, S. X. Bai, T. T. Zhang, W. Z. Cai & Z. Y. Wang, “Does Bt maize expressing Cry1Ac protein have adverse effects on the parasitoid Macrocentrus cingulum (Hymenoptera: Braconidae)?”, Insect science, Vol. 24, Issue. 4, pp. 599-612, 2017.
[95] M. M. Khaing, X. Yang, M. Zhao, W. Zhang, B. Wang, J. Wei & G. Liang, “Effects of antibiotics on biological activity of Cry1Ac in Bt-susceptible and Bt-resistant Helicoverpa armigera strains”, Journal of invertebrate pathology, Vol. 151, pp. 197-200, 2018.
[96] L. Niu, A. Mannakkara, L. Qiu, X. Wang, H. Hua, C. Lei, W. Ma, et al,. “Transgenic Bt rice lines producing Cry1Ac, Cry2Aa or Cry1Ca have no detrimental effects on Brown Planthopper and Pond Wolf Spider”, Scientific reports, Vol. 7, Issue. 1, pp. 1940, 2017.
[97] L. Niu, Z. Tian, H. Liu, H. Zhou, W. Ma, C. Lei & L. Chen, “Transgenic Bt cotton expressing Cry1Ac/Cry2Ab or Cry1Ac/EPSPS does not affect the plant bug Adelphocoris suturalis or the pollinating beetle Haptoncus luteolus”, Environmental pollution, Vol. 234, pp. 788-793, 2018.
[98] Y. Yang, B. Zhang, X. Zhou, J. Romeis, Y. Peng & Y. Li, “Toxicological and biochemical analyses demonstrate the absence of lethal or sublethal effects of cry1C-or cry2A-expressing Bt rice on the collembolan Folsomia candida”, Frontiers in plant science, Vol. 9, p. 131, 2018.
[99] Q. Liu, W. Yang, M. Li, Y. Wu, Y. Wang, S. Wu, et al,. “Effects of 60-week feeding diet containing Bt rice expressing the Cry1Ab protein on the offspring of Inbred Wuzhishan pigs fed the same diet”, Journal of agricultural and food chemistry, Vol. 65, Issue. 47, pp. 10300-10309, 2017.
[100] I. B. Salisu, A. A. Shahid, A. Yaqoob, A. Q. Rao, T. Husnain, “Effect of dietary supplementation of recombinant Cry and Cp4 epsps proteins on haematological indices of growing rabbits”, Journal of animal physiology and animal nutrition, Vol. 103, Issue. 1, pp. 305-316, 2019.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.