Full Paper View Go Back

Optimization of exopolysaccharide production by response surface methodology from Enterococcus faecium isolated from the fermented foods of Western Himalaya

Aditi Chauhan1 , Sarbjit Singh Kanwar2

Section:Research Paper, Product Type: Journal-Paper
Vol.6 , Issue.4 , pp.1-11, Aug-2019


CrossRef-DOI:   https://doi.org/10.26438/ijsrbs/v6i4.111


Online published on Aug 31, 2019


Copyright © Aditi Chauhan, Sarbjit Singh Kanwar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Aditi Chauhan, Sarbjit Singh Kanwar, “Optimization of exopolysaccharide production by response surface methodology from Enterococcus faecium isolated from the fermented foods of Western Himalaya,” International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.1-11, 2019.

MLA Style Citation: Aditi Chauhan, Sarbjit Singh Kanwar "Optimization of exopolysaccharide production by response surface methodology from Enterococcus faecium isolated from the fermented foods of Western Himalaya." International Journal of Scientific Research in Biological Sciences 6.4 (2019): 1-11.

APA Style Citation: Aditi Chauhan, Sarbjit Singh Kanwar, (2019). Optimization of exopolysaccharide production by response surface methodology from Enterococcus faecium isolated from the fermented foods of Western Himalaya. International Journal of Scientific Research in Biological Sciences, 6(4), 1-11.

BibTex Style Citation:
@article{Chauhan_2019,
author = {Aditi Chauhan, Sarbjit Singh Kanwar},
title = {Optimization of exopolysaccharide production by response surface methodology from Enterococcus faecium isolated from the fermented foods of Western Himalaya},
journal = {International Journal of Scientific Research in Biological Sciences},
issue_date = {8 2019},
volume = {6},
Issue = {4},
month = {8},
year = {2019},
issn = {2347-2693},
pages = {1-11},
url = {https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1407},
doi = {https://doi.org/10.26438/ijcse/v6i4.111}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i4.111}
UR - https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1407
TI - Optimization of exopolysaccharide production by response surface methodology from Enterococcus faecium isolated from the fermented foods of Western Himalaya
T2 - International Journal of Scientific Research in Biological Sciences
AU - Aditi Chauhan, Sarbjit Singh Kanwar
PY - 2019
DA - 2019/08/31
PB - IJCSE, Indore, INDIA
SP - 1-11
IS - 4
VL - 6
SN - 2347-2693
ER -

1025 Views    403 Downloads    113 Downloads
  
  

Abstract :
Eleven potential probiotic bacteria isolated from traditional fermented foods of Western Himalaya were screened for exopolysaccharide production by using ruthenium red milk agar and 3 isolates viz. AdF1, AdF2 and AdF3 were found to be positive. The quantitative analysis of exopolysaccharide production was done by phenol sulphuric acid method where AdF3 showed highest EPS production. For optimization of exopolysaccharide production carbon source, nitrogen source, pH, temperature and incubation time were optimized by using One Variable at a Time approach (OVAT) followed by Response Surface Methodology (RSM). Lactose was found to be the best carbon source (5% for AdF1 and 6% for AdF2 & AdF3) and yeast extract as the best nitrogen source (13.82% for AdF1 and 14.51 % for AdF2 & AdF3). The optimum pH, temperature and incubation time were 6.75, 37ºC and 60 h, respectively for all the isolates. Under optimized conditions, an overall increase of 1.55, 1.37 and 1.42 folds in EPS production was observed with AdF1, AdF2 and AdF3, respectively.

Key-Words / Index Term :
Exopolysaccharide, Enterococcus faecium, Response surface methodology

References :
[1] S. S. Kanwar, M. K. Gupta, C. Katoch, “Cereal based traditional alcoholic beverages of Lahaul and Spiti area of Himachal Pradesh”, Indian Journal of Traditional Knowledge, Vol.10, pp. 251-257, 2010.
[2] R. K. Singh , H. W. Chang, D. Yan, K. M. Lee, D. Ucmak, K. Wong, M. Abrouk, B. Farahnik, M. Nakamura, T. Zhu, T. Bhutani, W. Liao, “Influence of diet on the gut microbiome and implications for human health”, Journal of Translational Medicine, Vol. 15 pp.73, 2017.
[3] H. Hassanzadazar, A. Ehsani, “Phenotypic characterization of lactic acid bacteria isolated from traditional koopeh cheese”, Global Veterinaria, Vol.10 pp.148-152, 2013.
[4] S. Patel, A. Majumder, A. Goyal, “Potentials of Exopolysaccharides from lactic acid bacteria”, Indian Journal of Microbiology, Vol. 52, pp. 3-12, 2012.
[5] S. R. K. Kanamarlapudi, S. Muddada, “Characterization of Exopolysaccharide Produced by Streptococcus thermophilus CC30”, BioMed Research International, (2017) https://doi.org/10.1155/2017/4201809.
[6] E. B. Hansen , “Commercial bacterial starter cultures for fermented foods of the future”, International Journal of Food Microbiology, Vol. 78, pp. 119-131, 2002.
[7] D. Czerucka, T. Piche, P. Rampal, “Yeast as probiotics -Saccharomyces boulardii”, Aliment Pharmacology Therapy, Vol. 26, pp.767-778, 2007.
[8] S. Galle, E. K. Arendt, “Exopolysaccharides from sourdough lactic acid bacteria”, Critical Reviews in Food Science and Nutrition, Vol. 54, pp. 7, 2014.
[9] A. Patel, J. B. Prajapati, “Food and Health Applications of Exopolysaccharides produced by Lactic acid Bacteria”, Adv Dairy Res, Vol. 1, pp.107, 2013.
[10] A. Kuntiya, P. Hanmoungjai, C. Techapun, K. Sasaki, P. Seesuriyachan, “Influence of pH, sucrose concentration and agitation speed on exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as a raw material substitut, Maejo” International Journal of Science and Technology, Vol. 4, pp. 318-330, 2010.
[11] S. Jorge-Ignacio, B. Martinez, R. Guillen, R. Jimenez-Diaz, A. Rodriguez, “Culture conditions determine the balance between two different exopolysaccharides produced by Lactobacillus pentosus lps26”, Applied and Environmental Microbiology, Vol. 72, pp.7495-7502, 2006.
[12] P. Ruas-Madiedo, R. C. G. de-los, “Methods for the screening, isolation and characterization of exopolysaccharides produced by lactic acid bacteria”, Journal of Dairy Scences, Vol. 88, pp.843-856, 2005.
[13] P. Sanalibaba, G. A. Cakmak, “Exopolysaccharides Production by Lactic Acid Bacteria”, Appli Micro Open Access, Vol. 2, pp.1000115, 2016.
[14] L. Jolly, S. J. Vincent, P. Duboc, J. R. Neeser, “Exploiting exopolysaccharides from lactic acid bacteria”, Antonie Van Leeuwenhoek, Vol. 82, pp. 367-374, 2002.
[15] P. Duboc, B. Mollet, “Applications of exopolysaccharides in dairy industry”, International Dairy Journal, Vol. 11, pp.759-768, 2001.
[16] S. Chabot, “Exopolysaccharides from Lactobacillus rhamnous RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells and IFN-c in mouse splenocytes”, Dairy Science and Technology, Vol. 81, pp. 683-697, 2001.
[17] P. J. Looijesteijn, J. Hugenholtz, “Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis”, Journal of Bioscience and Bioengineering, Vol. 88 pp.178-182, 1999.
[18] A. D. Welman , I. S. Maddox, “Exopolysaccharides from lactic acid bacteria: perspectives and challenges”, Trends in Biotechnology, Vol. 21, pp.269-274, 2003.
[19] H. J. Ruijssenaars , F. Stingele , S. Hartmans , “Biodegradability of food-associated extracellular polysaccharides”, Current Microbiology, Vol. 40, pp.194-199, 2000.
[20] A. Sourabh, S. S. Kanwar, P. N. Sharma, “Diversity of bacterial probiotics in traditional fermented foods of western Himalaya”, International Journal of Probiotics and Prebiotics, Vol. 5, pp.193-202, 2010.
[21] A. Khuri, S. Mukhopadhyay, “Response surface methodology”, WIREs Computational Statistics, Vol. 2, pp. 128-149, 2010.
[22] D. Mora, M. G. Fortina, C. Parini, G. Ricci, M. Gatti, G. Giraffa, P. L. Manachini, “Genetic diversity and technological properties of Streptococcus thermophilus strains isolated from dairy products”, Journal of Applied Microbiology, Vol. 93, pp. 278-287, 2002.
[23] M. Dubios, K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith, “Colorimetric method for determination of sugars and related substances”, Analytical Chemistry, Vol. 28, pp. 350-356, 1956.
[24] J. Prasanna, L. Karunamoorthy, M. Venkat Raman, S. Prashanth, D. Raj Chordia, “Optimization of process parameters of small hole dry drilling in Ti-6AI-4V using Taguchi and grey relational analysis”, Measurement, Vol. 48, pp. 346-354, 2014.
[25] L. De Vuyst, B. Degeest, “Heteropolysaccharides from lactic acid bacteria”, FEMS Microbiology Reviews, Vol. 23, pp. 153-177, 1999.
[26] A. M. Fialho , L. M. Moreira , A. T. Granja , A. O. Popescu , K.. Hoffmann , I Sa-Correia , “Occurrence, production and applications of gellan: current state and perspectives”, Applied Microbiology and Biotechnology, Vol. 79, pp. 889-900, 2008.
[27] B. H. A. Rehm, “Bacterial polymers: biosynthesis, modifications and applications”, Nature Reviews Microbiology, Vol. 8, pp. 578-592, 2010.
[28] A. S. Kumar , K. Mody , B. Jha , “Bacterial exopolysaccharides-a perception”, Journal of Basic Microbiology, Vol. 47, pp.103-117, 2007.
[29] M. Ullrich, “Bacterial Polysaccharides: Current Innovations and Future Trends”, (Caister Academic Press, UK), Inc.p 358, 2009.
[30] R. Tallon , P. Bressollier , M. C. Urdaci , “Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56”, Research in Microbiology”, Vol. 154, pp. 705-712, 2003.
[31] S. Matsumoto , T. Hara , T. Hori , K. Mitsuyama , M. Nagaoka , N. Tomiyasu , A. Suzuki , M. Sata , “Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the downregulation of pro-inflammatory cytokines in lamina propria mononuclear cells”, Clinical and Experimental Immunology, Vol. 140, pp. 417-426, 2005.
[32] A. H. El-Saggan , B. Uhrik , “Improved staining of negative binding sites with ruthenium red on cryosections of frozen cells”, General Physiology and Biophysics, Vol. 21, pp. 457-46, 2002.
[33] G. E. Gardiner, R. P. Ross, J. M. Wallace, F. P. Scanlan, P. P. Jagers, G. F. Fitzgerald, J. K. Collins, C. Stanton, “Influence of a probiotic adjunct culture of Enterococcus faecium on the quality of Cheddar cheese”, Journal of Agricultural and Food Chemistry, Vol. 47, pp. 4907-4916, 1999.
[34] G. Giraffa, “Functionality of Enterococci in dairy products”, International Journal of Food Microbiology, Vol. 88, pp. 215-222, 2003.
[35] F. Mozzi, F. Vaningelgem, E. M. Hebert, R. V. Meulen, M. R. F . Moreno, G. F. Valdez, L. D. Vuyst, “Diversity of Heteropolysaccharide-Producing Lactic Acid Bacterium Strains and Their Biopolymers”, Applied Environmental Microbiology, Vol. 72, pp. 4431-4435, 2006.
[36] P. Kanmani , K. Suganya , R.S. Kumar , N. Yuvaraj , V. Pattukumar , K. A. Paari , V. Arul , “Synthesis and functional characterization of antibiofilm exopolysaccharide produced by Enterococcus faecium MC13 isolated from the gut of fish”, Applied and Biochemistry Biotechnology, Vol. 169, pp.1001-1015, 2013.
[37] X. Rihua, M. Shimin, W. Yang, L. Lisha, L. Pinglan, “Screening, identification and statistic optimization of a novel exopolysaccharide producing Lactobacillus paracasei”, African Journal of Microbiology Research, Vol. 4, pp. 783-795, 2010.
[38] T. Sivakumar, S. Sivasankara-Narayani, T. Shankar, Vijayabaskar, “Optimization of cultural conditions for exopolysaccharides produced by Frateuria aurantia”, International Journal of Applied and Pharmaceutial Technology, Vol. 3, pp. 133-143, 2012.
[39] S. Abdulrazack, V. Velayutham, V. Thangavelu, “Medium optimization for the production of exopolysaccharide by Bacillus subtilisusing synthetic sources and agro wastes”, Turkish Journal Biology, Vol. 37, pp. 280-288, 2013.
[40] B. Ismail, M. K. Nampoothiri, “Exopolysaccharide production and prevention of syneresis in starch using encapsulated probiotic Lactobacillus plantarum”, Food Technology and Biotechnoogy, Vol. 48, pp. 484-489, 2010.
[41] P. Vijayabaskar, S. Babinastarlin, Shankar, T. Sivakumar, K. T. K. Anandapandian, “Quantification and characterization of exopolysaccharides from Bacillus subtilis (MTCC121)”, Advances in Biological Research, Vol. 5, pp. 71-76, 2011.
[42] B. Peant, La-Pointe, C. Gilbert, D. Atlan, P. Waed, D. Roy, “Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus”, Microbiology, Vol. 151, pp.1839-1851, 2005.
[43] C. Datta, P. S. Basu, “Production of extracellular polysaccharides by a Rhizobium species from root nodules of Cajanuscajan”, Acta Biotechnologica, Vol. 19, pp. 59-68, 1999.
[44] P. S. Peiris, A. M. Dlamini, H. J. Bavor, “Optimization of bioprocess conditions for exopolysaccharide production by Klebsiella oxytoca”, World Journal of Microbiologyand Biotechnology, Vol. 14 pp. 917-919, 1998.
[45] N. Habibi, S. Soleimanian-Zad, S. Z. Mohammad, “Exopolysaccharides produced by pure culture of Lactobacillus, Lactococccus and Yeast isolated from kefir grain by Microtiter Plate Assay: Optimization and comparision”, World Applied Sciences Journal, Vol. 12, 742-750, 2011.
[46] S. B. Liu , L. P. Qiao , H. L. He , Q. Zhang , X. L. Chen , W. Z. Zhou , B. C. Zhou , Y. Z. Zhang , “Optimization of fermentation conditions and rheological properties of exopolysaccharide produced by deep-sea bacterium Zunongwangia profunda SM-A87”, PLoS One, Vol. 6, pp. 213-235, 2011.
[47] H. Hwang, S. Kim, J. Lim, J. Joo, H. Kim, H. Kim, J. Yun, “Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocin-induced diabetic rats”, Life Sciences, Vol. 76, pp. 3069- 3080, 2005.
[48] S. Jeeva, T. Selva-Mohan, A. Palavesam, N. C. J. Packia-Lakshmi, J. Raja-Brindh, “Production and optimization study of a Novel Extracellular Polysaccharide by wild-type isolates Of Xanthomonas campestris”, Journal of Microbiology and Biotechnology Research, Vol. 1, pp. 175-182, 2011.
[49] J. B. Sutherland, A. L. Selby, J. P. Freeman, F. E. Evans, C. E. Cerniglia, “Metabolism of phenanthrene by Phanerochaete chrysosporium”, Applied and Environmental Microbiology, Vol. 57, pp. 113310-3316, 1991.
[50] W Crueger, A Cruegr, “Substratos para la fermentation industrial”, Journal of Dairy Research, Vol. 42, pp. 123-138, 1993.
[51] S. V. Patil , R. B. Salunkhe , C. D. Patil , D. M. Patil , B. K. Salunke , “Bioflocculant exopolysaccharide production by Azotobacter indicus using flower extract of Madhuca latifolia L”, Applied Biochemistry and Biotechnology, Vol. 162, pp. 1095-1099, 2010.
[52] C. C. Tong, K. Rajendra, “Effect of carbon and nitrogen sources on the growth and production of cellulase enzymes of a newly isolated Aspergillus sp.”, Pertanika, Vol. 15, pp. 45-50, 1992.
[53] G. Selvakumar, S. Kundu, A. D. Gupta, Y. S. Shouche, H. S. Gupta, “Isolation and characterization of non rhizobial plant growth promoting bacteria from nodules of Kudzu (Puerariathunbergiana) and their effect on wheat seedling growth”, Current Microbiology, Vol. 56, pp. 134-139, 2008.
[54] R. Gupta, P. Gigras, H. Mohapatra, V. K. Goswami, B. Chauhan, “Microbial alpha amylase: a biotechnological perspective”, Process Biochemistry, Vol. 38, pp.1599-1616, 2003.
[55] F. P. Duta, F. P. de Franca, L. L. M. de-Almeida, “Optimization of culture conditions for exopolysaccharides production in Rhizobium sp. using the Response Surface Method”, Electronic Journal of Biotechnology, Vol. 9, pp. 317-347, 2005.
[56] T. Sivakumar, S. Sivasankara-Narayani, T. Shankar, Vijayabaskar, “Optimization of cultural conditions for exopolysaccharides produced by Frateuria aurantia”, International Journal of Applied and Pharmaceutial Technology, Vol. 3, pp. 133-143, 2012.
[57] J. Muralidharan, S. Jayachandran, “Physiochemical analyses of the exopolysaccharides produced by a marine biofouling bacterium, Vibrio aliginolyticus”, Process Biochemistry, Vol. 38, pp. 841-847, 2003.
[58] D. C. Boyle, A. E. Read, “Characterization of two extracellular polysaccharides from marine bacteria”, Applied and Environmental Microbiololgy, Vol. 46, pp. 392-399, 1983.
[59] Y. Zhang, S. Li, C. Zhang, Y. Luo, H.. Zhang, Z Yang, “Growth and exopolysaccharide production by Lactobacillus fermentum F6 in skim milk”, African Journal of Biotechnology, Vol. 10, pp. 2080-2091, 2011.
[60] J. L. U. M. Rao, T. Satyanarayana, “Statistical optimization of a high maltose forming, hyperthermostable and Ca2+ independent alpha-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology”, Journal of Applied Microbiology, Vol. 95, pp. 712-718, 2003.
[61] L. Qiang, L. Yumei, H. Sheng, L. Yingzi, S. Dongxue, H. Dake, W. Jiajia, Q. Yanhong, Z. Yuxia, “Optimization of fermentation conditions and properties of an exopolysaccharide from Klebsiella sp. H-207 and application in adsorption of hexavalent chromium”, PLoS One, Vol. 8, e53542, 2013.
[62] P. D. Haaland, “Statistical problem solving, in: Experimental design in biotechnology”, edited by Haaland P. D., (Marcel Dekker, Inc, New York), pp. 1-18, 1989.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation