Full Paper View Go Back

Influence of Organic Derivatives on Direct Regeneration of finger millet genotype CO 9

G. Atul Babu1 , R. Ravindhran2

Section:Research Paper, Product Type: Journal-Paper
Vol.6 , Issue.4 , pp.33-42, Aug-2019


CrossRef-DOI:   https://doi.org/10.26438/ijsrbs/v6i4.3342


Online published on Aug 31, 2019


Copyright © G. Atul Babu, R. Ravindhran . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: G. Atul Babu, R. Ravindhran, “Influence of Organic Derivatives on Direct Regeneration of finger millet genotype CO 9,” International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.33-42, 2019.

MLA Style Citation: G. Atul Babu, R. Ravindhran "Influence of Organic Derivatives on Direct Regeneration of finger millet genotype CO 9." International Journal of Scientific Research in Biological Sciences 6.4 (2019): 33-42.

APA Style Citation: G. Atul Babu, R. Ravindhran, (2019). Influence of Organic Derivatives on Direct Regeneration of finger millet genotype CO 9. International Journal of Scientific Research in Biological Sciences, 6(4), 33-42.

BibTex Style Citation:
@article{Babu_2019,
author = {G. Atul Babu, R. Ravindhran},
title = {Influence of Organic Derivatives on Direct Regeneration of finger millet genotype CO 9},
journal = {International Journal of Scientific Research in Biological Sciences},
issue_date = {8 2019},
volume = {6},
Issue = {4},
month = {8},
year = {2019},
issn = {2347-2693},
pages = {33-42},
url = {https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1412},
doi = {https://doi.org/10.26438/ijcse/v6i4.3342}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i4.3342}
UR - https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1412
TI - Influence of Organic Derivatives on Direct Regeneration of finger millet genotype CO 9
T2 - International Journal of Scientific Research in Biological Sciences
AU - G. Atul Babu, R. Ravindhran
PY - 2019
DA - 2019/08/31
PB - IJCSE, Indore, INDIA
SP - 33-42
IS - 4
VL - 6
SN - 2347-2693
ER -

805 Views    344 Downloads    100 Downloads
  
  

Abstract :
Finger millet (Eleusine coracana (L.) Gaertn.) is a commercially important food crop extensively cultivated in the arid and semi-arid tropical regions of India and East Africa. The current study was designed to develop an efficient protocol for micropropagation by the influence of additives to enhance the number of shoots per explant from Shoot Apical Meristems (SAMs) of finger millet genotype CO 9. The highest shoot regeneration frequency (95.89%) with an average of 46.52 shoots per explant and 10.86 cm shoot length per explant was achieved when SAMs were cultured in Shoot Regeneration Medium (SRM) containing Murashige and Skoog’s (MS) medium supplemented with 3.0 mg/L 6-Benzyl Amino Purine (BAP), 2.0 mg/L Kinetin and 5% coconut water, 300 mg/L proline and 400 mg/L casein enzymatic hydrolysate, and 3 mg/L glycine. Sub-culturing the SAMs in SRM at 2 weeks interval for 8 weeks resulted in an increase in the number of shoots per explant. The highest rooting frequency (100%) with an average root length of 7.32 cm was obtained on full-strength MS medium supplemented with 0.25 mg/L IAA. and successfully acclimated in the field, subsequently developed into fertile plants. Thus, the procedure described is a rapid and consistent method useful for efficient large-scale propagation and genetic transformation in finger millet.

Key-Words / Index Term :
Eleusine coracana, shoot apical meristems, Shoot Regeneration Medium, Random amplified polymorphic DNA

References :
[1]. B.N. Sastri, “the wealth of india: a dictionary of indian raw materials and industrial products”, Vol. III (D-E), Publication and Information Directorate. CSIR, New Delhi, pp. 160–166, 1989.
[2]. M.M. O’Kennedy, J.T. Burger, F.C. Botha “Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase”, Vol. 22, Issue.7. Plant Cell Reports pp.684–690, 2004.
[3]. M.M. O’Kennedy, B.G. Crampton, M. Lorito, E. Chakauya, W.A. Breese, J.T. Burger, “Expression of a β-1,3- glucanase from a biocontrol fungus in transgenic pearl millet”, South African Journal of Botany, Vol. 77, Issue 2, pp.335–345, 2011.
[4]. A.M. Latha, K.V. Rao, V.D. Reddy, “Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn)”, Plant Science, Vol. 169, Issue. 4, pp. 657–667, 2005.
[5]. A. Pande, S. Dosad, H.S. Chawla, S. Arora, “In vitro organogenesis and plant regeneration from seed-derived callus cultures of finger millet (Eleusine coracana)”, Brazilian Journal of Botany, Vol. 38,pp.19–23,2015.
[6]. S.Plaza-Wuthrich, Z.Tadele, “Millet improvement through regeneration and transformation. Biotechnology and Molecular Biology Review”, Vol 7, pp.48–61, 2012.
[7]. S.A. Ceasar, S. Ignacimuthu, “Genetic engineering of millets: current status and future prospects”, Biotechnology Letter vol. 31 pp.779–788, 2009.
[8]. T.S. Rangan, “Growth and plantlet regeneration in tissue cultures of some Indian millets: Paspalum scrobiculatum L., Eleusine coracana Gaertn. And Pennisetum typhoideum” Pers. Zeitschrift für Pflanzenphysiologie vol, 78, pp.208–216, 1976.
[9]. B.D. Mohanty, S.D. Gupta, P.D. Ghosh, “Callus initiation and plant regeneration in ragi (Eleusine coracana Gaertn.)”. Plant Cell Tissue Organ Culture Vol.5, Issue. 1, pp.47–150. 1985.
[10]. L. George, S. Eapen, “High frequency plant-regeneration through direct shoot development and somatic embryogenesis from immature inflorescence cultures of finger millet (Eleusine coracana Gaertn)”. Euphytica Vol.48, pp.269–274, 1990
[11]. S. Kumar, K. Agarwal, S.L. Kothari, “In vitro induction and enlargement of apical domes and formation of multiple shoots in finger millet, Eleusine coracana (L.) Gaertn and crowfoot grass, Eleusine indica (L.) Gaertn”. Current Science, Vol.81, pp.1482–1485, 2001
[12]. J.Pius, S. Eapen, L. George, P.S. Rao, and R.S. Raut, “Performance of plants regenerated through somatic embryogenesis in finger millet (Eleusine coracana Gaertn.),” Tropical Agricultural Research and Extention,Vol 2, pp. 87–90, 1999.
[13]. P. Gupta, S. Raghuvanshi, A.K. Tyagi, “Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli”,. Plant Biotech, Vol.18, pp.275–282, 2001.
[14]. N. Nethra, R. Gowda, P.H.R. Gowda, “Influence of culture medium on callus proliferation and morphogenesis in finger millet. In: Tadele, Z. (Ed.)”, New approaches to plant breeding of orphan crops in Africa. In Proceedings of an International Conference, September 19–21, 2007. Bern, Switzerland. Univ. Bern. pp. 167–178, 2009.
[15]. R. Hema, R.S. Vemanna, S. Sreeramulu, C.P. Reddy, M.S. Kumar, M. Udayakumar, “Stable expression of mtlD gene imparts multiple stress tolerance in Finger millet”,. PLoS One, 2014.
[16]. S. Dosad, H.S. Chawla, “In vitro plant regeneration from mature seeds of finger millet (Eleusine coracana) through somatic embryogenesis”, Indian Journal of Plant Physiology, Vol.20, pp.360–367, 2015.
[17]. S.A. Ceasar, S. Ignacimuthu, “Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn.)”, In Vitro Cellular &Development Biology – Plant Vol. 44, pp.427–435, 2008.
[18]. L. Satish, S.A. Ceasar, J. Shilpha, A.S. Rency, P. Rathinapriya, M. Ramesh, “Direct plant regeneration from in vitro derived shoot apical meristems of finger millet (Eleusine coracana (L.) Gaertn.)”, In Vitro Cellular &Development Biology – Plant, Vol.51, pp.192–200, 2015.
[19]. D.T. Nhut, B.V. Le, K.T.T. Van, “Somatic embryogenesis and direct shoot regeneration of rice (Oryza sativa L.) Using thin cell layer culture of apical meristematic tissue”, Journal Plant Physiology, Vol.157, pp. 559–565, 2000.
[20]. P. Lakshmanan, R.J Geijskes, L. Wang, A. Elliott, C.P.L. Grof, N. Berding, G.R. Smith, “Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture”, Plant Cell Reports,Vol. 25, pp. 1007–1015, 2006.
[21]. M. Dey, S. Bakshi, G. Galiba, L. Sahoo, S.K. Panda, “Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ,”. 3 Biotech, Vol. 2, pp.233–240, 2012.
[22]. M. Labra, C. Savini, M. Bracale, N. Pelucchi, L. Colombo, M. Bardini, F. Sala, “Genomic changes in transgenic rice (Oryza sativa L.) Plants produced by infecting calli with Agrobacterium tumefaciens”, Plant Cell Reports, Vol. 20, pp.325–330, 2001.
[23]. S. Arockiasamy, S. Ignacimuthu, “Regeneration of transgenic plants from two indica rice (Oryza sativa L.) Cultivars using shoot apex explants”, Plant Cell Reports, Vol.26, pp.1745–1753, 2007.
[24]. M.B. Sticklen, H.F. Oraby, “Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops”, In Vitro Cellular &Development Biology – Plant, Vol.41, pp.187–200, 2005.
[25]. A. Ahmad, H. Zhong, W. Wang, M.B, “Sticklen Shoot apical meristem: In vitro regeneration and morphogenesis in wheat (Triticum aestivum L.)”, In Vitro Cellular &Development Biology – Plant, Vol. 38, pp.163–167, 2002.
[26]. H Zhong, C Srinivasan, MB Sticklen, “In vitro morphogenesis of corn (Zea mays L.). I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips”, Vol.187, pp.483-489, 1992.
[27]. H. Zhong, B. Sun, D. Warkentin, S. Zhang, R. Wu, T. Wu, M.B. Sticklen, “The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes”, Plant Physiology, Vol. 110, pp.1097–1107, 1996.
[28]. H. Zhong, W. Wang, M.B Sticklen, “In vitro morphogenesis of Sorghum bicolor (L.) Moench: efficient plant regeneration from shoot apices”. Journal of Plant Physiology, Vol.153, pp.719–726, 1998.
[29]. P. Devi, H. Zhong, M.B. Sticklen, “In vitro morphogenesis of pearl millet [Pennisetum glaucum. (L.) R.Br.]: efficient production of multiple shoots and inflorescences from shoot apices”, Plant Cell Reports Vol.19, pp. 546–550, 2000.
[30]. S. Zhang, H. Zhang, M.B. Zhang, “Production of multiple shoots from shoot apical meristems of oat (Avena sativa L.)”, Journal of Plant Physiology, Vol. 148, pp. 667–671, 1996.
[31]. S. Zhang, M.J. Cho, T. Koprek, R. Yun, P. Bregitzer, P.G. Lemaux, “Genetic transformation of commercial cultivars of oat (Avena sativa L.) And barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings” Plant Cell Reports, Vol. 18, Issue. 4, pp.959–966, 1999.
[32]. L.M. Wu, Y.M. Wei and Y.L. Zheng, “Effects of silver nitrate on the tissue culture of immature wheat embryos”, Russian Journal of Plant Physiololgy, Vol. 53, Issue.4, pp. 530‐534, 2006
[33]. EH Bouiamrine, M Diouri and R El‐Halimi, “Somatic embryogenesis and plant regeneration capacity from mature and immature durum wheat embryos”, International journal of Biological sciences, Vol.9, Issue.2, pp. 29‐39, 2012
[34]. K. Oldach, A. Morgenstern, S. Rother, M. Girgi, M. O’Kennedy and H. Lörz, “Efficient in vitro plant regeneration from immature zygotic embryos of Pearl millet [Pennisettum glaucum (L) R Br] and Sorgum bicolor (L) Moench”, Plant Cell Reports,Vol 20,Issue.5, pp.416‐421, 2001.
[35]. H.A. El‐Itriby, S.K Assem, E.H.A. Hussein, F.M. Abdel‐Calil and M.A. Madkour, “Regeneration and transformation of egyptian maize inbred lines via immature embryo culture and a biolistic particle delivery syste”, In Vitro Cellular and Develop Biology‐Plant, Vol.39, Issue.5, pp.524‐531, 2003.
[36]. S. Pola, N.S. Mani and T. Ramana, “Long‐term maintenance of callus cultures from immature embryo of Sorghum bicolor”, world journal of agriculture science, Vol. 5, Issue.4, pp. 415‐421, 2009.
[37]. A. Sharma, V. Kumar, P Giridhar and G.A. Ravishankar, “Induction of in vitro flowering in Capsicum frutescens under the influence of silver nitrate and cobalt chloride and pollen transformation”, Electronic Journal of Biotechnology, Vol. 11, Issue.2, pp. 1‐6 2008.
[38]. G. Bora, H.K. Gogoi and P.J. Handique, “Effect of silver nitrate and gibberellic acid on in vitro regeneration, flower induction and fruit development in Naga Chilli”, Asia-Pacific Journal of Molecular Biology and Biotechnology, Vol.22, Issue. 1, pp. 137‐144, 2014.
[39]. P.K. Gupta, J.K. Roy, “Molecular markers in crop improvement: present status and future needs in India”, Plant Cell Tissue and Organ Culture, Vol. 70, pp.229–234, 2002.
[40]. J. G. K. Williams, A. R. Kubelak, K. J. Livak, J. A. Rafalski., S. V. Tingey, “DNA polymorphisms amplified by arbitrary primers are useful as genetic markers”, nucleic acids research, Vol.18, pp. 6531-6535, 1990.
[41]. T. Murashige, F. Skoog, “A revised medium for rapid growth and bioassays with tobacco tissue cultures” Plant Physiology, Vol.15, pp.473–497, 1962.
[42]. J.J. Doyle, J.L. Doyle, “Isolation of plant DNA from fresh tissue”, Focus, Vol.12, pp.13–15, 1990
[43]. L. Satish, P. Rathinapriya, A.S. Rency, A.Ceasar, S. Pandian, R. Rameshkumar, “Somatic embryogenesis and regeneration using Gracilaria edulis and Padina boergesenii seaweed liquid extracts and genetic fidelity in finger millet (Eleusine coracana)”, Journal of Applied Phycology, Vol. 28, Issue. 3, pp. 2083–2098, 2016.
[44]. S. Srivastav, S.L. Kothari, “Embryogenic callus induction and high frequency plant regeneration in pearl millet”, Cereal Research Communications, Vol.30, pp. 69–74, 2002.
[45]. P. Baskaran. And N. Jayabalan. “In vitro plant regeneration and mass propagation system for Sorghum bicolor-a valuable major cereal crop”, Journal of Agricultural Technology, Vol.1, pp. 345-363, 2005.
[46]. M. Ramakrishnan, S.A. Ceasar, V. Duraipandiyan, M.A. Daniel, S. Ignacimuthu, “Efficacious somatic embryogenesis and fertile plant recovery from shoot apex explants of onion (Allium cepa. L.)”, In Vitro Cellular & Developmental Biology – plant, Vol. 49, pp.285–293, 2013.
[47]. K. Ozawa, A. Komamine, “Establishment of a system of highfrequency embryogenesis from long-term cell suspension cultures of rice (Oryza sativa L.). Theoretical and Applied Genetics, Vol.77, pp.205–211, 1989
[48]. V.K. Sharma, R. Hänsch, R.R. Mendel and J. Schulze, “A highly efficient plant regeneration system through multiple shoot differentiation from commercial cultivars of barley (Hordeum vulgare L.) Using meristematic shoot segments excised from germinated mature embryos”, Plant Cell Reports, Vol. 23, pp. 9‐16, 2004.
[49]. M. Cheng, T. Hu, J Layton, C.N .Liu, J.E. Fry, “Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat”, In Vitro Cellular & Developmental Biology – plant, Vol. 39, pp. 595–604, 2003.
[50]. M. Ramesh, V. Murugiah, A.K, “Gupta Efficient in vitro plant regeneration via leaf base segments of indica rice (Oryza sativa L)”, Indian Journal of Experimental Biology, Vol.47, pp.68–74, 2009.
[51]. A. Piqueras, N. Alburquerque, K.M. Folta, “Explants used for the generation of transgenic plants” In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants. Springer, Berlin Heidelberg, pp 31–56, 2010

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation