Full Paper View Go Back
Bioprospecting of Fungi for Melanin fabrication: A Comprehensive Review
Avinash Irappa Ammanagi1 , Abhijeeth Shivappa Badiger2 , Shivasharana C. T.3
Section:Review Paper, Product Type: Journal-Paper
Vol.6 ,
Issue.4 , pp.89-100, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.89100
Online published on Aug 31, 2019
Copyright © Avinash Irappa Ammanagi, Abhijeeth Shivappa Badiger, Shivasharana C. T. . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Avinash Irappa Ammanagi, Abhijeeth Shivappa Badiger, Shivasharana C. T., “Bioprospecting of Fungi for Melanin fabrication: A Comprehensive Review,” International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.89-100, 2019.
MLA Style Citation: Avinash Irappa Ammanagi, Abhijeeth Shivappa Badiger, Shivasharana C. T. "Bioprospecting of Fungi for Melanin fabrication: A Comprehensive Review." International Journal of Scientific Research in Biological Sciences 6.4 (2019): 89-100.
APA Style Citation: Avinash Irappa Ammanagi, Abhijeeth Shivappa Badiger, Shivasharana C. T., (2019). Bioprospecting of Fungi for Melanin fabrication: A Comprehensive Review. International Journal of Scientific Research in Biological Sciences, 6(4), 89-100.
BibTex Style Citation:
@article{Ammanagi_2019,
author = {Avinash Irappa Ammanagi, Abhijeeth Shivappa Badiger, Shivasharana C. T.},
title = {Bioprospecting of Fungi for Melanin fabrication: A Comprehensive Review},
journal = {International Journal of Scientific Research in Biological Sciences},
issue_date = {8 2019},
volume = {6},
Issue = {4},
month = {8},
year = {2019},
issn = {2347-2693},
pages = {89-100},
url = {https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1418},
doi = {https://doi.org/10.26438/ijcse/v6i4.89100}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i4.89100}
UR - https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1418
TI - Bioprospecting of Fungi for Melanin fabrication: A Comprehensive Review
T2 - International Journal of Scientific Research in Biological Sciences
AU - Avinash Irappa Ammanagi, Abhijeeth Shivappa Badiger, Shivasharana C. T.
PY - 2019
DA - 2019/08/31
PB - IJCSE, Indore, INDIA
SP - 89-100
IS - 4
VL - 6
SN - 2347-2693
ER -
Abstract :
Melanin is a gloomy diffusive shade, present as a self-protective operator in miscellaneous life forms including microorganisms, plants, animals and human beings. Melanin assumes numerous self-defensive parts, for example, hindering of UV radiation, free radical adsorption, and lethal iron chelation, penetrating of phenolic mixes and defending against ecological pressure. Therefore, it is a conventional compound in remedy, pharmacology and beauty care products. Melanin is arranged from L-tyrosine by means of a development of enzymatic and non-enzymatic reactions by the chemical tyrosinase (EC 1.14.18.1). To begin with, tyrosinase catalyzes the hydroxylation of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA). The L-DOPA is reacted to dopachrome, which is changed over to melanin by a progression of non-enzymatic oxido-reduction reactions. Chemical production of melanin is cost effective so microbial production of melanin is considered to be good in industrial scale. Melanin is critical component of some the microorganisms as reported. This review is concerned with transformed classes of melanin, pathway of melanin; factors influence the melanin production and application of melanin isolated from different fungi.
Key-Words / Index Term :
Melanin, Tyrosine, Tyrosinase, L-DOPA, Fungi
References :
[1]. Borovansky J. History of melanosome research. In Melanins and melanosomes: biosynthesis, biogenesis, physiological, and pathological functions, Borovansky J, Riley PA (eds), Wiley-VCH Verlag GmbH & Co., Weinheim, , pp. 1-19, 2011.
[2]. Berzelius JJ. Lehrbuch der Chemie. Arnoldische Buchbandlung, Leipzig, pp. 67-69, 1840.
[3]. Ebbell, B. The Papyrus Ebers: the Greatest Egyptian Medical Document. Levin and Munksgaard, Copenhagen, Denmark, pp. 1-135, 1937.
[4]. Westerhof W. The discovery of the human melanocyte. Pigment Cell Research, 19(3), 183-193, 2006.
[5]. Sandra RPS, Gabriela SS, Jazmina CRA, Helen FL, Rita CRG. Melanin. In Production of melanin pigment by fungi and its biotechnological applications, Miroslav B (ed), Intech Open, Rijeka, Croatia, pp. 47-97, 2017.
[6]. Ruan L, He W, He J, Sun M, Yu Z. Cloning and expression of mel gene from Bacillus thuringiensis in Escherichia coli. Antonie Van Leeuwenhoek, 87, 283-288, 2005.
[7]. Cabrera-Valladares N, Martinez A, Pinero S, Lagunas-Munoz VH, Tinoco R, de Anda R, Vazquez-Duhalt R, Bolivar F, Gosset G. Expression of the melA gene from Rhizobium etli CFN42 in Escherichia coli and characterization of the encoded tyrosinase. Enzyme Microb Technol, 38, 772-779, 2006.
[8]. Claus H, Decker H. Bacterial tyrosinases. Syst Appl Microbiol, 29, 3-14, 2006.
[9]. Wan X, Liu HM, Liao Y, Su Y, Geng J, Yang MY, Chen XD, Shen P. Isolation of a novel strain of Aeromonas media producing high levels of DOPA-melanin and assessment of the photoprotective role of the melanin in bioinsecticide applications. J Appl Microbiol 103, 2533-2541, 2007.
[10]. Yuan W, Burleigh SH, Dawson JO. Melanin biosynthesis by Frankia strain CeI5. Physiol Plant 131, 180- 190, 2007.
[11]. Shuster V, Fishman A. Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium. J Mol Microbiol Biotechnol, 17, 188-200, 2009.
[12]. Ikeda R, Sugita T, Jacobson ES, Shinoda T. Laccase and melanization in clinically important Cryptococcus species other than Cryptococcus neoformans. J Clin Microbiol, 40, 1214-1218, 2002.
[13]. Kohashi PY, Kumagai T, Matoba Y, Yamamoto A, Maruyama M, Sugiyama M. An efficient method for the over expression and purification of active tyrosinase from Streptomyces castaneoglobisporus. Protein Expr Purif, 34, 202-207, 2004.
[14]. Marino SM, Fogal S, Bisaglia M, Moro S, Scartabelli G, De Gioia L, Spada A, Monzani E, Casella L, Mammi S, Bubacco L. Investigation of Streptomyces antibioticus tyrosinase reactivity toward chlorophenols. Arch Biochem Biophys, 505, 67-74, 2011.
[15]. Fuqua WC, Coyne VE, Stein DC, Lin CM, Weiner RM. Characterization of melA: a gene encoding melanin biosynthesis from the marine bacterium Shewanella colwelliana. Gene, 109, 131-136, 1991.
[16]. Lopez-Serrano D, Solano F, Sanchez-Amat A. Identification of an operon involved in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Gene, 342, 179-187, 2004.
[17]. Selinheimo E, Saloheimo M, Ahola E, Westeholm-Parvinen A, Kalkkinen N, Buchert J, Kruus K. Production and characterization of a secreted, C-terminally processed tyrosinase from the filamentous fungus Trichoderma reesei. FEBS J, 273, 4322-4335, 2006.
[18]. Bell AA, Wheeler MH. Biosynthesis and functions of fungal melanins. Annual Review of Phytopathology, 24, 411-451, 1986.
[19]. Lewis FG, Antony MG. Melanin and novel melanin precursors from Aeromonas media. FEMS Microbiol Lett, 169, 261-268, 1998.
[20]. Raper HS. The anaerobic oxidases. Physiol Rev, 8, 245-282, 1928.
[21]. Mason HS. The chemistry of melanin: mechanism of the oxidation of dihydroxyphenyalanine by tyrosinase. J Biol Chem, 172, 83-99, 1948.
[22]. Nosanchuk JD, Casadevall A. Budding of melanized Cryptococcus neoformans in the presence or absence of L-DOPA. Microbiology, 149, 1945-1951, 2003a.
[23]. Riley PA. Melanin. Int J Biochem Cell Biol 29(11), 1235-1239, 1997.
[24]. Enochs WS, Nilges MJ, Swartz HM. A Standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigment Cell Res, 6, 91-99, 1993.
[25]. Della-Cioppa G, Garger SJ, Sverlow GG, Turpen TH, Grill LK. Melanin production E. coli from a cloned tyrosinase gene. Biotechnology (NY), 8(7), 634-638, 1990.
[26]. Saiz-Jimenez C. Microbial melanins in stone monuments. Sci Total Environ, 167(1), 273-286, 1995.
[27]. del Marmol V, Beermann F. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett, 381, 165-168, 1996.
[28]. Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Gen Biol, 38, 143-158, 2003.
[29]. Plonka PM, Grabacka M. Melanin synthesis in microorganisms - biotechnological and medical aspects. Acta Biochim Pol, 53(3), 429-443, 2006.
[30]. Kobayashi T, Vieira WD, Potterf B, Sakai C, Imokawa G, Hearing VJ. Modulation of melanogenic protein expression during the switch from eu- to pheomelanogenesis. J Cell Sci, 108, 2301-2309, 1995.
[31]. Nappi A, Ottaviani E. Cytotoxicity and cytotoxic molecules in invertebrates. Bio Essays, 22, 469-480, 2000.
[32]. Gibello A, Ferrer E, Sanz J, Martin M. Polymer production by Klebsiella pneumoniae 4-hydroxyphenylacetic acid hydroxylase genes cloned in Escherichia coli. Appl Environ Microbiol, 61, 4167-4171, 1995.
[33]. Kotob S, Coon SI, Quintero EJ, Weiner RM. Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae, a Hyphomonas strain and Shewanella colwelliana. Appl Environ Microbiol 61, 1620-1621, 1995.
[34]. Espin JC, Jolivet S, Wichers HJ. Kinetic study of the oxidation of γ-L-glutaminyl-4-hydroxybenzene catalyzed by mushroom (Agaricus bisporus) tyrosinase. J Agric Food Chem, 47, 3495-3502, 1999.
[35]. Funa N, Ohnishi Y, Fuji I, Shibuya M, Ebizuka Y, Horinouchi S. A new pathway for polyketide synthesis in microorganisms. Nature, 400, 897-899, 1999.
[36]. Jacobson ES. Pathogenic roles for fungal melanins. Clin Microbiol Rev, 13, 708-717, 2000.
[37]. Crippa R, Horak V, Prota G, Svoronos P, Wolfram L. Chemistry of melanins alkaloids. Chem Pharmacol, 36, 253-323, 1990.
[38]. Wilczok T, Bilińska B Buszman E, Kopera M. Spectroscopic studies of chemically modified synthetic melanins. Arch Biochem Biophys, 231(2), 257-262, 1984.
[39]. Duff GA, Roberts JE, Foster N. Analysis of the structure of synthetic and natural melanins by solid-phase NMR. Biochemistry, 27(18), 7112-7116, 1988.
[40]. Piattelli M, Fattorusso E, Nicolaus RA, Magno S. The structure of melanins and melanogenesis - V: ustilago melanin. Tetrahedron, 21(11), 3229-3236, 1965.
[41]. Stüssi H, Rast DM. The biosynthesis and possible function of γ-glutaminyl-4-hydroxybenzene in Agaricus bisporus. Phytochemistry, 20(10), 2347-2352, 1981.
[42]. Eisenman HC, Mues M, Weber SE, Frases S, Chaskes S, Gerfen G, Casadevall A. Cryptococcus neoformans laccase catalyses melanin synthesis from both D-and L-DOPA. Microbiology, 53(12), 3954-3962, 2007.
[43]. Frases S, Salazar A, Dadachova E, Casadevall A. Cryptococcus neoformans can utilize the bacterial melanin precursor homogentisic acid for fungal melanogenesis. Appl Environ Microbiol, 73(2), 615-621, 2007.
[44]. Garcia-Rivera J, Eisenman HC, Nosanchuk JD, Aisen P, Zaragoza O, Moadel T, Dadachova E, Casadevall A. Comparative analysis of Cryptococcus neoformans acid-resistant particles generated from pigmented cells grown in different laccase substrates. Fungal Genet Biol, 42(12), 989-998, 2005.
[45]. Gessler NN, Egorova AS, Belozerskaya TA. Melanin pigments of fungi under extreme environmental conditions. Appl Biochem Microbiol, 50(2), 105-113, 2014.
[46]. Geis PA, Wheeler MH, Szaniszlo PJ. Pentaketide metabolites of melanin synthesis in the dematiaceous fungus Wangiella dermatitidis. Arch Microbiol 137, 324-328, 1984.
[47]. Butler MJ, Day AW. Fungal melanins: a review. Can J Microbiol, 44(12), 1115-1136, 1998.
[48]. Henson JM, Butler MJ, Day AW. The dark side of the mycelium: melanins of phytopathogenic fungi. Annu Rev Phytopathol, 37(1), 447-471, 1999.
[49]. Fling M, Horowitz NH, Heinemann SF. The isolation and properties of crystalline tyrosinase from Neurospora. J Biol Chem, 238(6), 2045-2053, 1963.
[50]. Esser K. Phenoloxidases in the ascomycete Podospora anserina. I. The identification of laccase and tyrosinase in the wild strain. Arch Mikrobiol, 46, 217-226, 1963.
[51]. Bull AT, Carter BLA. The isolation of tyrosinase from Aspergillus nidulans, its kinetic and molecular properties and some consideration of its activity in vivo. Microbiology, 75(1), 61-73, 1973.
[52]. Williamson PR, Wakamatsu K, Ito S. Melanin biosynthesis in Cryptococcus neoformans. J Bacteriol, 180(6), 1570-1572, 1998.
[53]. Prota G. Melanins and melanogenesis. Academic Press, San Diego, CA, 1992.
[54]. Tsai HF, Fujii I, Watanabe A, Wheeler MH, Chang YC, Yasuoka Y, Ebizuka Y, Kwon-Chung KJ. Pentaketide melanin biosynthesis in Aspergillus fumigatus requires chain-length shortening of a heptaketide precursor. J BiolChem, 276, 29292-29298, 2001.
[55]. Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T, Brakhage AA. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol, 75(2), 493-503, 2009.
[56]. Jolivet S, Arpin N, Wichers HJ, Pellon G. Agaricus bisporus browning: a review. Mycol Res 102(12), 1459-1483, 1998.
[57]. Wang G, Aazaz A, Peng Z, Shen P. Cloning and overexpression of a tyrosinase gene mel from Pseudomonas maltophila. FEMS Microbiol Lett, 185, 23-27, 2000.
[58]. Jacobson ES, Hove E, Emery HS. Antioxidant function of melanin in black fungi. Infect Immun 63(12), 4944-4945, 1995.
[59]. Gessler NN, Averyanov AA, Belozerskaya TA. Reactive oxygen species in regulation of fungal development. Biochemistry, 72(10), 1091-1109, 2007.
[60]. Arun G, Eyini M, Gunasekaran P. Characterization and biological activities of extracellular melanin produced by Schizophyllum commune (Fries). Indian J Exp Biol, 53(6), 380-387, 2015.
[61]. Cunha MML, Franzen AJ, Seabra SH, Herbst MH, Vugman NV, Borba LP, Souza W, Rozental S. Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. BMC Microbiol 10(1), 1-9, 2010.
[62]. Fogarty RV, Tobin JM. Fungal melanins and their interaction with metals. Enzyme Microb Technol, 19(4), 311-317, 1996.
[63]. Nosanchuk JD, Stark RE, Casadevall A. Fungal melanin: what do we know about structure?. Front Microbiol, 6, 1-7, 2015.
[64]. Lopaczynski W, Zeisel SH. Antioxidants, programmed cell death, and cancer. Nutr Res, 21(1), 295-307, 2001.
[65]. Hoogduijn MJ, Cemeli E, Anderson D, Wood JM, Thody AJ. Melanin protects against Ho-induced DNA strand breaks through its ability to bind Ca. Br J Dermatol 203, 148(4), 867.
[66]. Goncalves CRR, Pombeiro-Sponchiado SR. Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans. Biol Pharm Bull, 28(6), 1129-1131, 2005.
[67]. Harman D. Free radical theory of aging: an update. Ann N Y Acad Sci, 1067(1), 10-21, 2006.
[68]. Lu Y, Ye M, Song S, Li L, Shaikh F, Li J. Isolation, purification, and anti-aging activity of melanin from Lachnums ingerianum. Appl Biochem Biotechnol, 174(2), 762-771, 2014.
[69]. Mohagheghpour N, Waleh N, Garger SJ, Dousman L, Grill LK, Tusé D. Synthetic melanin suppresses production of proinflammatory cytokines. Cell Immunol, 199(1), 25-36, 2000.
[70]. Mednick AJ, Nosanchuk JD, Casadevall A. Melanization of Cryptococcus neoformans affects lung inflammatory responses during cryptococcal infection. Infect Immun, 73(4), 2012-2019, 2005.
[71]. Plonka PM, Grabacka M. Melanin synthesis in microorganisms - biotechnological and medical aspects. Acta Biochim Pol, 53(3), 429-443, 2006.
[72]. Cruvinel WDM, Mesquita Júnior D, Araújo JAP, Catelan TTT, Souza AWSD, Silva NPD, Andrade LEC. Immune system: Part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Revistabrasileira de Reumatologia, 50(4), 434-447, 2010.
[73]. Bocca AL, Brito PP, Figueiredo F, Tosta CE. Inhibition of nitric oxide production by macrophages in chromoblastomycosis: a role for Fonsecaea pedrosoi melanin. Mycopathologia, 161(4), 195-203, 2006.
[74]. Zhang J, Wang L, Xi L, Huang H, Hu Y, Li X, Huang X, Lu S, Sun J. Melanin in a meristematic mutant of Fonsecaea monophora inhibits the production of nitric oxide and Th1 cytokines of murine macrophages. Mycopathologia, 175(5-6), 515-522, 2013.
[75]. Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One, 2(5), 1-13, 2007.
[76]. Schweitzer AD, Howell RC, Jiang Z, Bryan RA, Gerfen G, Chen CC, Mah D, Cahill S, Casadevall A, Dadachova E. Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors. PLoS One, 4(9), 1-8, 2009.
[77]. Ye M, Guo G, Lu Y, Song S, Wang HY, Yang L. Purification, structure and anti-radiation activity of melanin from Lachnum YM404. Int J Biol Macromol, 63(1), 170-176, 2014.
[78]. Mostert AB, Powell BJ, Gentle IR, Meredith P. On the origin of electrical conductivity in the bio-electronic material melanin. Appl Phys Lett, 100(9), 093701, 2012.
[79]. Mironenko NV, Alekhina IA, Zhdanova NN, Bulat SA. Intraspecific variation in gamma-radiation resistance and genomic structure in the filamentous fungus Alternaria alternata: a case study of strains inhabiting Chernobyl reactor no. 4. Ecotoxicol Environ Saf, 45, 177-187, 2000.
[80]. Dighton J, Tugay T, Zhdanova N. Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett, 281(2), 109-120, 2008.
[81]. Apte M, Girme G, Bankar A, Ravikumar A, Zinjarde S. 3,4-dihydroxy-L-phenylalanine derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. J Nanobiotechnol, 3-11, 2013.
[82]. Demain AL, Adrio JL. Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation. Nat Compd Drugs 1, 251-289, 2008.
[83]. Dufossé L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N. Filamentous fungi are large scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol, 26, 56-61, 2014.
[84]. Kumar A, Vishwakarma HS, Singh J, Kumar M. Microbial pigments: production and their applications in various industries. Int J Pharm Chem Biol Sci, 5(1), 203-212, 2015.
[85]. Babitha S. Microbial pigments. In Biotechnology for agro-industrial residues utilization: utilization of agro-residues, Nigam PSN, Pandey A (eds), Springer, Netherlands, pp. 147-162, 2009.
[86]. Meyer V, Wu B, Ram AFJ. Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol Lett, 33(3), 469-476, 2011.
[87]. Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol, 16(2), 231-238, 2005.
[88]. Akilandeswari P, Pradeep BV. Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol, 100 (4), 1631-1643, 2016.
[89]. Dikshit R, Tallapragada P. Monascus purpureus: a potential source for natural pigment production. J Microbiol Biotechnol Res, 1(4), 164-174, 2011.
[90]. Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A. Use of several waste substrates for carotenoid-rich yeast biomass production. J Environ Manage 95(S), 338-342, 2012.
[91]. Sharmila G, Nidhi B, Muthukumaran C. Sequential statistical optimization of red pigment production by Monascus purpureus (MTCC 369) using potato powder. Ind Crops Prod, 44, 158-164, 2013.
[92]. Prajapati VS, Soni N, Trivedi UB, Patel KC. An enhancement of red pigment production by submerged culture of Monascus purpureus MTCC 410 employing statistical methodology. Biocatal Agric Biotechnol, 3(2), 140-145, 2014.
[93]. da Costa Souza PN, Grigoletto TLB, de Moraes LAB, Abreu LM, Guimarães LHS, Santos CR, Galvão LR, Cardoso PG. Production and chemical characterization of pigments in filamentous fungi. Microbiology, 162, 12-22, 2015.
[94]. Hajjaj H, Goma G, François JM. Effect of the cultivation mode on red pigments production from Monascus ruber. Int J Food Sci Technol, 50(8), 1-6, 2015.
[95]. Zhang M, Xiao G, Thring RW, Chen W, Zhou H, Yang H. Production and characterization of melanin by submerged culture of culinary and medicinal fungi Auricularia auricula. Appl Biochem Biotechnol, 176(1), 253-266, 2015.
[96]. Joshi VK, Attri D, Baja A, Bhushan S. Microbial pigments. Indian J Biotechnol 2, 362-369, 2003.
[97]. Ahn J, Jung J, Hyung W, Haam S, Shin C. Enhancement of Monascus pigment production by the culture of Monascus sp. J101 at low temperature. Biotechnol Prog, 22(1), 338-340, 2006.
[98]. Lisboa HCF. Influence of culture conditions on the production of melanin pigment by Aspergillus fungus. Sao Paulo State University, Araraquara, Brazil, 2003.
[99]. Orozco SFB, Kilikian BV. Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World J Microbiol Biotechnol, 24(2), 263-268, 2008.
[100]. Kang B, Zhang X, Wu Z, Wang Z, Park S. Production of citrinin-free Monascus pigments by submerged culture at low pH. Enzyme Microb Technol, 55, 50-57, 2014.
[101]. Tudor D, Robinson SC, Cooper PA. The influence of pH on pigment formation by lignicolous fungi. Int Biodeterior Biodegrad, 80, 22-28, 2013.
[102]. Méndez A, Pérez C, Montañéz JC, Martínez G, Aguilar CN. Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ Sci B, 12(12), 961-968, 2011.
[103]. Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae JC, Oh BT. Effect of light on growth, intracellular and extracellular pigment production by five pigment producing filamentous fungi in synthetic medium. J Biosci Bioeng, 109(4), 346-350, 2010.
[104]. Zhou Z, Yin Z, Hu X. Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation. Biotechnol Appl Biochem, 61(6), 716-723, 2014.
[105]. Said FM, Chisti Y, Brooks J. The effects of forced aeration and initial moisture level on red pigment and biomass production by Monascus ruber in packed bed solid state fermentation. Int J Environ Sci Dev, 1(1), 1-4, 2010.
[106]. Ruiz B, Chávez A, Forero A, García-Huante Y, Romero A, Sánchez M, Rocha D, Sánchez B, Rodríguez-Sanoja R, Sánchez S, Langley E. Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol, 36(2), 146-167, 2010.
[107]. Pradeep FS, Begam MS, Palaniswamy M, Pradeep BV. Influence of culture media on growth and pigment production by Fusarium moniliforme KUMBF1201 isolated from paddy field soil. World Appl Sci J, 22(1), 70-77, 2013.
[108]. Gunasekaran S, Poorniammal R. Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr J Biotechnol, 7(12), 1894-1898, 2008.
[109]. Nee Nigam PS. Production of bioactive secondary metabolites. In Biotechnology for agro-industrial residues utilization: utilization of agro-residues, Nigam PSN, Pandey A (eds), Springer, Netherlands, p. 129-145, 2009.
[110]. Tydelskaia IL, Rozhavin MA, Sologub VV. Pathogenicity factors of melanin-forming strains of Pseudomonas aeruginosa. Zh Mikrobiol Epidemiol Immunobiol 73-76, 1981.
[111]. Quereshi S, Pandey AK, Singh J. Optimization of fermentation conditions for red pigment production from Phomaher barum (FGCC# 54) under submerged cultivation. J Phytol 2(9), 1-8, 2010.
[112]. Celestino JR, de Carvalho LE, da Paz Lima, M, Lima AM, Ogusku MM, de Souza JVB. Bioprospecting of amazon soil fungi with the potential for pigment production. Process Biochem, 49(4), 569-575, 2014.
[113]. Jalmi P, Bodke P, Wahidullah S, Raghukumar S. The fungus Gliocephalotrichum simplex as a source of abundant, extracellular melanin for biotechnological applications. World J Microbiol Biotechnol, 28(2), 505-512, 2012.
[114]. Sun S, Zhang X, Chen W, Zhang L, Zhu H. Production of natural edible melanin by Auricularia auricular and its physicochemical properties. Food Chem, 196, 486-492, 2016.
[115]. Sun S, Zhang X, Sun S, Zhang L, Shan S, Zhu H. Production of natural melanin by Auricularia auricula and study on its molecular structure. Food Chem, 190, 801-807, 2016.
[116]. Pandey A, Soccol CR, Mitchell D. New developments in solid state fermentation: I - bioprocesses and products. Process Biochem, 35(10), 1153-1169, 2000.
[117]. Singhania RR, Soccol CR, Pandey A. Application of tropical agro-industrial residues as substrate for solid-state fermentation processes. In: Current developments in solid-state fermentation, Pandey A, Soccol CR, Larroche C (eds), Springer, New York, pp. 412-442.
[118]. Lopes FC, Tichota DM, Pereira JQ, Segalin J, De Oliveira Rios A, Brandelli A. Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative. Appl Biochem Biotechnol, 171(3), 616-625, 2013.
[119]. Velmurugan P, Hur H, Balachandar V, Kamala-Kannan S, Lee KJ, Lee SM, Chae JC, Oh BT. Monascus pigment production by solid-state fermentation with corn cob substrate. J Biosci Bioeng, 112(6), 590-594, 2011.
[120]. Babitha S, Soccol CR, Pandey A. Jackfruit seed - a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technol Biotechnol, 44(4), 465-471, 2006.
[121]. Shivprasad S, Page W. Catechol formation and melanization by a Na+-dependent Azotobacter chroococcum: a protective mechanism for aeroadaption? Appl Environ Microbiol, 55, 1811-1817, 1989.
[122]. Rani MHS, Ramesh T, Subramanian J, Kalaiselvam M. Production and characterization of melanin pigment from halophilic black yeast Hortaea werneckii. Int J Pharma Res Rev, 2(8), 9-17, 2013.
[123]. Zou Y, Tian M. Fermentative production of melanin by Auricularia auricula. J Food Process Preserv, 41(3), e12909, https://doi.org/10.1111/jfpp.12909, 2017.
[124]. Goncalves PJ, Baffa O, Graeff CFO, Gonçalves PJ, Filho OB. Effects of hydrogen on the electronic properties of synthetic melanin. J Appl Phys 99(10), 104701, 2006.
[125]. Meredith P, Sarna T. The physical and chemical properties of eumelanin. Pigment Cell Res, 19(6), 572-594, 2006.
[126]. Ambrico M, Ambrico PF, Ligonzo T, Cardone A, Cicco SR, d’Ischia M, Farinola GM. From commercial tyrosine polymers to a tailored polydopamine platform: concepts, issues and challenges en route to melanin-based bioelectronics. J Mater Chem C, 3(25), 6413-6423, 2015.
[127]. Ligonzo T, Ambrico M, Augelli V, Perna G, Schiavulli L, Tamma MA, Biagi PF, Minafra A, Capozzi V. Electrical and optical properties of natural and synthetic melanin biopolymer. J Non Cryst Solids, 355(22-23), 1221-1226, 2009.
[128]. Rizzo DM, Blanchette RA, Palmer MA. Biosorption of metal ions by Armillaria rhizomorphs. Can J Bot, 70(8), 1515-1520, 1992.
[129]. Goncalves CRR, Pombeiro-Sponchiado SR. Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans. Biol Pharm Bull, 28(6), 1129-1131, 2005.
[130]. Gonçalves RCR, Lisboa HCF, Pombeiro-Sponchiado SR. Characterization of melanin pigment produced by Aspergillus nidulans. World J Microbiol Biotechnol, 28(4), 1467-1474, 2012.
[131]. Caporalin CB. Comparison of biosorption of rare earth metals by melanized biomass of Aspergillus nidulans fungus in free and immobilized forms. Sao Paulo State University, Araraquara, Brazil, 2011.
[132]. Zhdanova NN, Vasilevskaya AI, Sadovnikov YS, Artyshkova LA. Dynamics of micromycete complexes from soils contaminated with radionuclides. Mikol i Fitopatol, 24(6), 504-512, 1990.
[133]. Singleton I, Tobin JM. Fungal interactions with metals and radionuclides for environmental bioremediation In Fungi and environmental change. Frankland JC, Magan N, Gadd GM (eds), Cambridge University Press, Cambridge, pp. 282-298, 1996.
[134]. Steiner M, Linkov I, Yoshida S. The role of fungi in the transfer and cycling of radionuclides in forest ecosystems. J Environ Radioact, 58(2), 217-241, 2002.
[135]. Zhdanova NN, Tugay T, Dighton J, Zheltonozhsky, V, Mcdermott P. Ionizing radiation attracts soil fungi. Mycol Res, 108(9), 1089-1096, 2004.
[136]. Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustain, 7(2), 2189-2212, 2015.
[137]. Shakya M, Sharma P, Meryem SS, Mahmood Q, Kumar A. Heavy metal removal from industrial wastewater using fungi: uptake mechanism and biochemical aspects. J Environ Eng, 142(9), C6015001, 2015.
[138]. Araújo M, Viveiros R, Correia TR, Correia IJ, Bonifácio VDB, Casimiro T, Aguiar-Ricardo A. Natural melanin: a potential pH-responsive drug release device. Int J Pharm, 469(1), 140-145, 2014.
[139]. Schweitzer AD, Revskaya E, Chu P, Pazo V, Friedman M, Nosanchuk JD, Cahill S, Frases S, Casadevall A, Dadachova E. Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer. Int J Radiat Oncol Biol Phys, 78(5), 1494-1502, 2010.
[140]. Berliner DL, Erwin RL, McGee DR. Therapeutic uses of melanin. Patent No. 5776968, 1998.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.