Full Paper View Go Back
Benard Masila1 , Charles Langat2
Section:Research Paper, Product Type: Journal-Paper
Vol.7 ,
Issue.1 , pp.72-78, Feb-2020
Online published on Feb 28, 2020
Copyright © Benard Masila, Charles Langat . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Benard Masila, Charles Langat, “Multilocation Evaluation for yield and Yield Related Traits in Three-Way Cross Maize Hybrids in Kenya,” International Journal of Scientific Research in Biological Sciences, Vol.7, Issue.1, pp.72-78, 2020.
MLA Style Citation: Benard Masila, Charles Langat "Multilocation Evaluation for yield and Yield Related Traits in Three-Way Cross Maize Hybrids in Kenya." International Journal of Scientific Research in Biological Sciences 7.1 (2020): 72-78.
APA Style Citation: Benard Masila, Charles Langat, (2020). Multilocation Evaluation for yield and Yield Related Traits in Three-Way Cross Maize Hybrids in Kenya. International Journal of Scientific Research in Biological Sciences, 7(1), 72-78.
BibTex Style Citation:
@article{Masila_2020,
author = {Benard Masila, Charles Langat},
title = {Multilocation Evaluation for yield and Yield Related Traits in Three-Way Cross Maize Hybrids in Kenya},
journal = {International Journal of Scientific Research in Biological Sciences},
issue_date = {2 2020},
volume = {7},
Issue = {1},
month = {2},
year = {2020},
issn = {2347-2693},
pages = {72-78},
url = {https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1724},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1724
TI - Multilocation Evaluation for yield and Yield Related Traits in Three-Way Cross Maize Hybrids in Kenya
T2 - International Journal of Scientific Research in Biological Sciences
AU - Benard Masila, Charles Langat
PY - 2020
DA - 2020/02/28
PB - IJCSE, Indore, INDIA
SP - 72-78
IS - 1
VL - 7
SN - 2347-2693
ER -
Abstract :
Maize (Zea mays L.) is the third most important crop after wheat and rice worldwide. It is the main staple food in Kenya. The objective of this study was to evaluate genotype by environment interactions and yield stability of twenty three-way cross hybrids at four locations in Kenya evaluated in two seasons. The experiment was conducted in an alpha lattice design (Incomplete Randomized Block Design) with three replications. There was significant variation for grain yield among the genotypes, locations and their interaction. Stability analysis was evaluated using the joint regression, additive main effects and multiplicative interactions (AMMI) and GGE biplot methods. The environmental and genotypic means ranged from 2.72 to 7.67 and 2.39 to 5.56 respectively. The regression coefficient (βi) and deviation from regression (s2di) values of these genotypes ranged from 0.55 to 1.64 and 0.02 to 0.59 respectively. There were also significant differences for genotypes, environments and genotype by environment interaction for the AMMI analysis of variance. The total proportion of variation contributed by genotypes, environments and genotype by environment interaction was 8.82%, 76.03% and 9.17% respectively. When considering the Pi, βi, S2 di and the AMMI biplot analysis, the most stable genotype in the high yielding category in this study considering all stability parameters was WE-CMT-TWC-1001 (G1) followed by WE-CMT-TWC-1003 (G3) and WE-CMT-TWC-1020 (G20). The best genotype with both high mean yield and high stability was WE-CMT-TWC-1003 (G3). The genotypes identified could be utilized as reference for genotype evaluation and tested further for selection.
Key-Words / Index Term :
Multilocation trial, grain yield, three way cross maize hybrids
References :
[1] B. Mbuvi, M. Mwimali, M. Githiri, “Estimation of General and Specific Combining Ability of Maize Inbred Lines Using Single Cross Testers for Earliness”, W J Agric Res, Vol.6, No.2, pp.37–48, 2019.
[2] R. U. Aziz, S. Gaherwal, “Egg parasitism caused by Trichogramma spp. Against maize stem borer, Chilo partellus”, Intl J Scientific Res in Biol Science, Vol.4, No.5, pp.14–17, 2017.
[3] D. Chepkesis, H. Parzies, C. Schroeder, T. Onyango K’Oloo, R. Nar Bahadur, N. Jick, D. Gemenet, “Potentials of Hybrid Maize Varieties for Small-Holder Farmers in Kenya: A Review Based on Swot Analysis”, Afric J Fd, Agric, Nutr and Dvpt, Vol.13, No.2, pp.7562–7568, 2013.
[4] D. Djurovic, M. Madic, N. Bokan, V. Stevovic, D. Tomic, S. Tanaskovic, “Stability Parameters for Grain Yield and its Component Traits in Maize Hybrids of Different FAO Maturity Groups”, J Cntrl Eurpn Agric, Vol.15, No.4, pp.199–212, 2014.
[5] Y. Beyene, S. Mugo, T. Tefera, J. Gethi, J. Gakunga, S. Ajanga, H. Karaya, R. Musila, W. Muasya, R. Tende, S. Njoka, “Yield stability of stem borer resistant maize hybrids evaluated in regional trials in east Africa”, Afric J Plt Sci, Vol.6, No.2, pp.77–83, 2012.
[6] F. Nzuve, S. Githiri, D. M. Mukunya, J. Gethi, “Analysis of Genotype x Environment Interaction for Grain Yield in Maize Hybrids”, J Agric Sci, Vol.5, No.11, pp.75-85, 2013.
[7] M. Kwabena Osei, B. Annor, J. Adjebeng- Danquah, A. Danquah, E. Danquah, E. Blay, H. Adu-Dapaah, “Genotype × Environment Interaction: A Prerequisite for Tomato Variety Development”, In S. Tatu Nyaku & A. Danquah (Eds.), Recent Advances in Tomato Breeding and Production, IntechOpen, London UK, pp.72-91, 2019.
[8] E. Tena, F. Goshu, H. Mohamad, M. Tesfa, D. Tesfaye, A. Seife, “Genotype × environment interaction by AMMI and GGE-biplot analysis for sugar yield in three crop cycles of sugarcane (Saccharum officinirum L.) clones in Ethiopia”, Cogent Fd and Agric, Vol.5, No.1, 2019.
[9] J. Adjebeng-Danquah, J. Manu-Aduening, V. E. Gracen, I. K. Asante, S. K. Offei, “AMMI Stability Analysis and Estimation of Genetic Parameters for Growth and Yield Components in Cassava in the Forest and Guinea Savannah Ecologies of Ghana”, Intrnl J Agrmy, PP.1-10, 2017.
[10] B. Mitrovic, D. Stanisavljevic, S. Treskic, M. Stojaković, M. Ivanovic, G. Bekavac, M. Rajković, “Evaluation of Experimental Maize Hybrids Tested in Multi-Location Trials Using AMMI and GGE Biplot Analyses”, Turk J Fld Crps, Vol.17, No.1, pp.35–40, 2012.
[11] G. V. Miranda, L. V. de Souza, L. J. M. Guimarães, H. Namorato, L. R. Oliveira, M. O. Soares, “Multivariate analyses of genotype x environment interaction of popcorn”, Pesquisa Agropecuária Brasileira, Vol.44, No.1, pp.45–50, 2009.
[12] S. A. Eberhart, W. A. Russell, “Stability Parameters for Comparing Varieties”. Crp Sci, Vol.6, No.1, pp.36–40, 1966.
[13] A. Morsy, W. Fares, S. Ragheb, M. Ibrahim, “Stability Analysis of some Soybean Genotypes using a Simplified Statistical Model”, J Plnt Prod, Vol.6, No.12, pp.1975–1990, 2015.
[14] D. Bassa, F. Gurmu, H. Mohammed, “Comparison of Univariate and Multivariate Models to Analyze Stability of Common Bean (Phaseolus vulgaris L.) Genotypes in Ethiopia”, Agrotechnology, Vol.8, No.2, pp.1-7, 2019.
[15] M. Matin, A. Aminul Islam, M. Khaleque Mian, J. Ahmed, M. Amiruzzaman, “Stability analysis for yield and yield contributing characters in hybrid maize (Zea mays L.)”, Afric J Agric Res, Vol.12, No.37, pp.2795–2806, 2017.
[16] T. R. A. de Oliveira, H. W. L. de Carvalho, G. H. F. Oliveira, E. F. N. Costa, G. de A. Gravina, R. D. dos Santos, J. L. S. de. Carvalho Filho, “Hybrid maize selection through GGE biplot analysis”, Bragantia, Vol.78, No.2, pp.166–174, 2019.
[17] C. Singh, A. Gupta, V. Gupta, P. Kumar, R. Sendhil, B. Tyagi, G. Singh, R. Chatrath, G. Singh, “Genotype x environment interaction analysis of multi-environment wheat trials in India using AMMI and GGE biplot models”, Crp Brdng and Appl Biotech, Vol.19, No.3, pp.309–318, 2019.
[18] T. Tefera, S. Mugo, Y. Beyene, H. Karaya, J. Gakunga, G. Demissie, “Postharvest Insect Pest and Foliar Disease Resistance and Agronomic Performance of New Maize Hybrids in East Africa”, Intrnl J Plnt Brdng and Gntics, Vol.7, No.2, pp.92–104, 2013.
[19] C. Magorokosho, B. Vivek, J. MacRobert, “Characterization of Maize Germplasm Grown in Eastern and Southern Africa. Results of the 2008 Regional Trials Coordinated by CIMMYT”, Harare, Zimbabwe, pp.1-64 2009.
[20] SAS, “SAS ® 9.4 for Windows”, SAS Institute Inc, Cary, N.C, USA, 2013.
[21] A. Bisawas, U. Sarker, B. Banik, M. Rohman, M. Talukder, “Genotype x environment interaction for grain yield of maize (Zea mays L.) inbreds under salinity stress”, Bngldsh J Agric Res, Vol.39, No.2, pp.293–301, 2014.
[22] J. B. Duarte, M. J. Zimmermann, “Selection of locations for common bean (Phaseolus vulgaris L.) germoplasm evaluation”, Revista Brasileira de Genética, Vol.14, No.3, pp.765–770, 1991.
[23] H. Mafouasson, V. Gracen, M. Yeboah, G. Ntsomboh-Ntsefong, L. Tandzi, C. Mutengwa, “Genotype-by-Environment Interaction and Yield Stability of Maize Single Cross Hybrids Developed from Tropical Inbred Lines”, J Agrnmy, Vol.8, No.62, pp.1-17, 2018.
[24] S. Ngailo, H. Shimelis, J. Sibiya, K. Mtunda, J. Mashilo, “Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease”, Heliyon, Vol.5, No.3, pp.1-23, 2019.
[25] E. K. Mageto, D. Makumbi, K. Njoroge, R. Nyankanga, “Genetic analysis of early-maturing maize (Zea mays L.) Inbred lines under stress and non-stress conditions”, J Crp Imprvmnt, Vol.31, No.4, pp.560–588, 2017.
[26] W. Anley, H. Zeleke, Y. Dessalegn, “Genotype X environment interaction of maize (Zea mays L.) across North Western Ethiopia”, J Plnt Brdng and Crp Sci, Vol.5, No.9, pp.171–181, 2013.
[27] J. Crossa, “From Genotype × Environment Interaction to Gene × Environment Interaction”, Currnt Gnmcs, Vol.13, No.3, pp.225–244, 2012.
[28] L. C. I. da Silveira, V. Kist, T. O. M. de Paula, M. H. P. Barbosa, L. A. Peternelli, E. Daros, “AMMI analysis to evaluate the adaptability and phenotypic stability of sugarcane genotypes”, Scientia Agricola, Vol.70, No.1, pp.27–32, 2013.
[29] F. E. Below, J. R. Seebauer, “Management and environmental factor contributions to maize yield”, MDPI Books, pp.1-189, 2019.
[30] T. Welu Gebremedhin, “Adaptation of food barley (Hordeum vulgare L.) genotypes”, J Agric Sci, Vol.60, No.2, pp.227–235, 2015.
[31] P. C. Rodrigues, D. G. S. Pereira, J. T. Mexia, “A comparison between Joint Regression Analysis and the Additive Main and Multiplicative Interaction model: The robustness with increasing amounts of missing data”, Scientia Agricola, Vol.68, No.6, pp.679–686, 2011.
[32] D. Bustos-Korts, I. Romagosa, G. Borràs-Gelonch, A. M. Casas, G. A. Slafer, F. van Eeuwijk, “Genotype by Environment Interaction and Adaptation”, In R. A. Meyers (Ed.), Encyclopedia of Sustainability Science and Technology, Springer New York, New York, pp.1–44, 2018.
[33] W. Yan, M. S. Kang, B. Ma, S. Woods, P. L. Cornelius, “GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data”, Crp Sci, Vol.47, No.2, pp.643–653, 2007.
[34] G. A. Owusu, D. Nyadanu, P. Owusu-Mensah, R. Adu Amoah, S. Amissah, F. C. Danso, “Determining the effect of genotype × environment interactions on grain yield and stability of hybrid maize cultivars under multiple environments in Ghana”, Ecol Gntcs and Gnmcs, Vol.9, pp.7–15, 2018.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.