Full Paper View Go Back

A Search of COVID-19 main Protease Inhibitor from Plant Derived Alkaloids using Chloroquine and Hydroxychloroquine as Reference: An In-silico Approach

Bhaskor Kolita1 , Amlan Jyoti Bora2 , Pinaki Hazarika3

Section:Research Paper, Product Type: Journal-Paper
Vol.7 , Issue.2 , pp.51-61, Apr-2020


Online published on Apr 30, 2020


Copyright © Bhaskor Kolita, Amlan Jyoti Bora, Pinaki Hazarika . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Bhaskor Kolita, Amlan Jyoti Bora, Pinaki Hazarika, “A Search of COVID-19 main Protease Inhibitor from Plant Derived Alkaloids using Chloroquine and Hydroxychloroquine as Reference: An In-silico Approach,” International Journal of Scientific Research in Biological Sciences, Vol.7, Issue.2, pp.51-61, 2020.

MLA Style Citation: Bhaskor Kolita, Amlan Jyoti Bora, Pinaki Hazarika "A Search of COVID-19 main Protease Inhibitor from Plant Derived Alkaloids using Chloroquine and Hydroxychloroquine as Reference: An In-silico Approach." International Journal of Scientific Research in Biological Sciences 7.2 (2020): 51-61.

APA Style Citation: Bhaskor Kolita, Amlan Jyoti Bora, Pinaki Hazarika, (2020). A Search of COVID-19 main Protease Inhibitor from Plant Derived Alkaloids using Chloroquine and Hydroxychloroquine as Reference: An In-silico Approach. International Journal of Scientific Research in Biological Sciences, 7(2), 51-61.

BibTex Style Citation:
@article{Kolita_2020,
author = {Bhaskor Kolita, Amlan Jyoti Bora, Pinaki Hazarika},
title = {A Search of COVID-19 main Protease Inhibitor from Plant Derived Alkaloids using Chloroquine and Hydroxychloroquine as Reference: An In-silico Approach},
journal = {International Journal of Scientific Research in Biological Sciences},
issue_date = {4 2020},
volume = {7},
Issue = {2},
month = {4},
year = {2020},
issn = {2347-2693},
pages = {51-61},
url = {https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1858},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=1858
TI - A Search of COVID-19 main Protease Inhibitor from Plant Derived Alkaloids using Chloroquine and Hydroxychloroquine as Reference: An In-silico Approach
T2 - International Journal of Scientific Research in Biological Sciences
AU - Bhaskor Kolita, Amlan Jyoti Bora, Pinaki Hazarika
PY - 2020
DA - 2020/04/30
PB - IJCSE, Indore, INDIA
SP - 51-61
IS - 2
VL - 7
SN - 2347-2693
ER -

427 Views    653 Downloads    108 Downloads
  
  

Abstract :
Coronavirus disease 2019 (COVID-19) is an infectious disease that causes respiratory illness in human and has now become a major challenge for all over the world. As no drug is approved yet for COVID-19, it is strongly demanding to search lead compounds. Therefore, the current investigation is an attempt to screen lead molecule for inhibition of Covid-19 main protease. Herein, we considered 98 plant derived alkaloids having antimalarial activity, quinine and docked with COVID-19 main protease taking Chloroquine, hydroxychloroquine as reference. Finally, compounds Bidebiline E, Bisnordihydrotoxiferine and Thalifaberine were screened as lead molecule on the basis of Moldock score, H-bond interaction and ADMET study, and recommended for in vitro investigation.

Key-Words / Index Term :
COVID-19; Chloroquine; Hydroxychloroquine; Alkaloids; ADMET

References :
[1] X. Xu, P. Chen, J. Wang, et al. “Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission” Sci China Life Sci. 63, 457–460,2020.
[2] J.E.L. Wong, Y.S. Leo, C.C. Tan.”COVID-19 in Singapore-Current Experience: Critical Global Issues That Require Attention and Action” JAMA.323(13),1243-1244, 2020.
[3] Li, X. Guan, P. Wu, et al. “Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia”. N Engl J Med. 382,1199-1207, 2020.
[4] A.K. Singh, A. Singh, A. Shaikh, R. Singh, A. Misra.”Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries” Diabetes Metab Syndr. 26;14(3).241-246. 2020 .
[5] M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, et al.”Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro”. Cell Resear, volume 30, pp 269–271, 2020.
[6] F. Touret, X. de Lamballerie “Of chloroquine and COVID-19”. Antiviral Res.177:104762, 2020.
[7] V.M.Quintana, B.Selisko, J.E.Brunetti,C.Eydoux,n J.C.Guillemot, B.Canard, E.B.Damonte, J.G.Julander, V.Castilla. “Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses” Antiviral Research, Volume 176:104749 2020.
[8] K.P.Mishra, N. Sharma, D. Diwaker , L. Ganju and S.B. Singh.” Plant Derived Antivirals: A Potential Source of Drug Development” J Virol Antivir Res, 2:2, 2013.
[9] Pelletier and Caventoz. “Suite: Des recherches chimiques sur les quinquinas, Annales de Chimie et de Physique”, 15: 337-365, 1820.
[10] Z. Xu, C. Peng, Y. Shi, Z. Zhu, K. Mu, and X. Wang, “Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling , moleculardocking and binding free energy calculation” bioRxiv.1201,0–2,2020.
[11] S. Khaerunnisa, H. Kurniawan, R. Awaluddin , S. Suhartati , S. Soetjipto. “Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Molecular Docking Study” Preprints 2020030226, 2020. (doi: 10.20944/preprints202003.0226.v1).
[12] I. M. Said, A. Latiff, S. J. Partridge and J. D. Phillipson,., “Alkaloids from Dehaasia incrassata.” Planta Med., 57, 389, 1991.
[13] S. Kanokmedhakul et al. “Bioactive constituents of the roots of Polyalthia cerasoides.” J Nat Prod.70: 1536–1538, 2007.
[14] G.M. Rukunga et al. “The antiplasmodial activity of spermine alkaloids isolated from Albizia gummifera” Fitoterapia 78: 455–459, 2007.
[15] C. W. Wright, D. Allen, Ya Cai, J. D. Phillipson, I. M. Said, G. C. Kirby, D. C. Warhurst. “In vitro anti of amoebic and antiplasmodial activities of alkaloids isolated from Alstonia angustifolia roots” Phytother Res., 6, 121–124. 1992.
[16] K. Likhitwitayawuid, C. K. Angerhofer, G. A. Cordell, and J. M. Pezzuto,.. “Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Stephania erects.” J. Nat. Prod., 56, 30–38, 1993.
[17] K. Likhitwitayawuid, C. K. Angerhofer, H.Chai, J. M. Pezzuto and G. A. Cordell “Cytotoxic and antimalarial alkaloids from the bulbs of Crium amabile” J. Nat. Prod. 56, 1331–1338, 1993.
[18] E. Osorio et al. “Actividad antiplasmodial de alcaloidesaporfinicos de Rollinia pittieri y Pseudomalmea boyacana(Annonaceae)” Vitae. Rev Fac Quimica Farm. 13: 49–54. 2006.
[19] K. Likhitwitayawuid, C. K. Angerhofer, H.Chai, J. M. Pezzuto and G. A. Cordell “Cytotoxic and antimalarial alkaloids from the tubers of Stephania pierrei” J. Nat. Prod. 56,1468–1478. 1993 .
[20] L. Z. Lin,. et al. “Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Cyclea barbata.” J. Nat. Prod., 56, 22–29. 1993.
[21] N,T. Nguyen et al. “Antiplasmodial alkaloids from Desmos rostrata” J Nat Prod. 71: 2057–2059. 2008.
[22] A. Phrutivorapongkul et al. “Anti-plasmodial activity of bisbenzylisoquinoline alkaloids from Michelia figo leaves” Thai J Health Res. 20: 121–128. 2006.
[23] L.Z. Lin et al. “ Thalifaberidine, a cytotoxic aporphine-benzylisoquinoline alkaloid from Thalictrum faberi” J. Nat. Prod., 57, 1430–1436, 1994.
[24] G. C. Kirby, A. Paine, D. C. Warhurst, B. K Noamese, and J. D. Phillipson “In vitro and in vivo antimalarial activity of cryptolepine, a plant-derived indoloquinoline” Phytother. Res, 9, 359–363,1995.
[25] M. Sauvain, et al., “Antimalarial activity of alkaloids from Pogonopus tubulosus”. Phytother. Res. 10, 198–201. 1996.
[26] I. Kitagawa, T. Mahmud, P Simanjuntak, K. Hori, T. Uji and H. Shibuya “Indonesian medicinal plants. VIII. Chemical structures of three new triterpenoids, bruceajavanin A, dihydrobruceajavanin A, and bruceajavanin B, and a new alkaloidal glycoside, bruceacanthinoside, from the stems of Brucea javanica (Simaroubaceae)”Chem. Pharm. Bull., 42, 1416–1421, 1994 .
[27] P. Grellier et al., “Antimalarial activity of cryptolepine and isocryptolepine,alkaloids isolated from Cryptolepis sanguinolenta” Phytother. Res. 10, 317–321, 1996,
[28] Y. F Hallock et al., “Michellamines D-F, new HIV-inhibitorydimiric naphthylisoquinoline alkaloids and korupensamine E, a new antimalarial monomer, from Anchistrocladus korupensis” J.Nat. Prod., 60(7), 677–-83, 199 .
[29] Y. F. Hallock, J. H. Cordellina, M. Schaffer, Bringmann, G. Francois, and M. R. Boyd, A. Korundamine, “ a novel HIVinhibitory and antimalarial ‘hybrid’ naphthylisoquinoline alkaloid heterodime from Ancistrocladus korupensis” Bioorg. Med.Chem. Lett., 8, 1729–1734, 1998.
[30] A. Chea et al. “Antimalarial activity of alkaloids isolated from Stephania rotunda” J Ethnopharmacol 112: 132–137, 2007.
[31] T. Takaya “New type of Febrifugine analogues, bearing a quinolizidine moiety, show antimalarial activity against Plasmodium malaria parasite” J. Med. Chem.42, 3163–3166, 1999.
[32] I. Muhammad, D.C. Dunbar, S. Takamatsu, L. A. Walker, and , A. M. Clark “Antimalarial, cytotoxic, and antifungal alkaloids from Duguetia hadrantha” J. Nat. Prod.,64,559–562. 2001.
[33] H. Morita et al. “Cassiarins A and B, novel antiplasmodial alkaloids from Cassia siamea” Org Lett; 9: 3691–3693, 2007.
[34] G. Bringmann, C. Gunther, W. Saeb, J. Mies, A. Wickramasinghe, V. Mudogo and R. Brun, “Ancistrolikokines A–C: New 5,8¢-coupled naphthylisoquinoline alkaloids from Ancistrocladus likoko” J. Nat. Prod. 63, 1333–1337, 2000.
[35] V. Munoz,. et al., “Antimalarial activity and cytotoxicity of (–)- roemrefidine isolated from the stem bark of Sparattanthelium amazonum” Planta Med., 65, 448–449, 1999 .
[36] V. Jullian et al.“Validation of use of a traditional antimalarial remedy from French Guiana, Zanthoxylum rhoifolium Lam” J Ethnopharmacol, 106: 348–352, 2006.
[37] Osorio E et al. “Actividad antiplasmodial de alcaloides aporfinicos de Rollinia pittieri y Pseudomalmea boyacana (Annonaceae)” Vitae. Rev Fac Quimica Farm 13: 49–54, 2006.
[38] Toriizuka Y et al. “New lycorine-type alkaloid from Lycoris traubii and evaluation of antitrypanosomal and antimalarial activities of lycorine derivatives” Bioorg Med Chem. 16(24):10182-9.. 2008.
[39] E.Osorio et al. “Actividad antiplasmodial de alcaloides aporfinicos de Rollinia pittieri y Pseudomalmea boyacana (Annonaceae)” Vitae. Rev Fac Quimica Farm, 13: 49–54, 2006.
[40] N. Keawpradub, G.C. Kirby, J. C. P. Steele and P. J. Houghton “Antiplasmodial activity of extracts and alkaloids of three Alstonia species from Thailand” Planta Med., 65, 690–694, 1999.
[41] D. Staerk, E Lemmich, J. Christensen, A. Kharazmi, C. E Olsen and J. W. Jaroszewski “Leishmanicidal, antiplasmodial and cytotoxic activity of indole alkaloids from Corynanthe pachyceras” Planta Med. 66, 531–536, 2000,
[42] L. Mambu, M. T.Martin, D. Razafi-Mahefa, D. Ramanitrahasimbola, P. Rasoanaino and F. Frappier “Spectral characterization and antiplasmodial activity of bisbenzylisoquinolines from Solona ghesquiereina” Planta Med. 66, 537–540. 2000.
[43] M. Frederich, et al., “New antimalarial and cytotoxic sungucine derivatives from Strychnos icaja roots” Planta Med., 66,262–269, 2000.
[44] G. Bringmann et al., “Ancistrobertsonines B, C, and D as well as 1,2-didehydroancistrobertsonine D from Ancistrocladus robertsoniorum” Phytochemistry,52,321–332, 1999.
[45] Z. Li, H. Wan, Y. Shi, P. Ouyang “Personal experience with four kinds of chemical structure drawing software: review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch” J Chem Inf Comput Sci, 44:1886-90, 2004.
[46] X. Liu, B. Zhang, Z. Jin, H Yang, Z. Rao “The crystal structure of COVID-19 main protease in complex with an inhibitor N3”. doi: 10.2210/pdb6LU7/pdb
[47] R. Thomsen, M.H..Christensen “MolDock: a new technique for high-accuracy molecular docking” J Med Chem. 49:3315-3321., 2006.
[48] H.A.DRajendran, B.Malgija, N.S.Ebenezer, U.Maheswari, Victor Roch G, J.Priyakumari, S.Ignacimuthu, “Homology modeling and molecular docking studies of Purple acid Phosphatase from Setaria italica (Foxtail millet),” International Journal of Scientific Research in Biological Sciences, Vol.5, Issue.4, pp.119-124, 2018.
[49] D.K. Gehlhaar, D. Bouzida, P. A. Rejto “Proceedings of the Seventh International Conference on Evolutionary Programming” ISBN:3-540-64891-7, 1998.
[50] J.M. Yang, C.C. Chen “GEMDOCK: A Generic Evolutionary Method for Molecular Docking” Proteins Structure Function and Bioinformatics. 55(2):288-304, 2004.
[51] F. Cheng, W. Li, Y. Zhou, J Shen, Z. Wu, G. Liu, P.W. Lee, Y. Tang “admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties.” J Chem Inf Model. 52:3099-105, 2012.
[52] F. Cheng, J Shen, Y. Yu, W Li, G. Liu, P.W. Lee, Y. Tang “In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods” Chemosphere. 82:1636−1643, 2011.
[53] F. Cheng, Y. Yu, J. Shen, L. Yang, W. Li, G. Liu , P.W. Lee, Y. Tang “Classification of Cytochrome P450 Inhibitors and non Inhibitors using Combined Classifiers” J Chem Inf Model, 51:996−1011. 2011.
[54] F. Cheng, Y. Yu, Y. Zhou, J. Shen, W. Xiao, L. Yang, G. Liu, W. Li , W.P. Lee and Y. Tang.”Insights into molecular basis of cytochrome p450 inhibitory promiscuity of compounds” J Chem Inf Model. 51:2482−2495, 2011.
[55] F. Cheng, J. Shen, W. Li, P.W. Lee, Y. Tang “In Silico prediction of terrestrial and aquatic toxicities for organic chemicals” Chin J Pestic Sci. 12:477−488. 2011.
[56] F. Cheng, Y. Ikenaga, Y. Zhou, Y. Yu, W. Li, J. Shen, Z. Du, L. Chen, C. Xu, G. Liu, P.W. Lee, Y.Tang “In Silico assessment of chemical biodegradability” J Chem Inf Model.52:655−669, 2012.
[57] F. Broccatelli, E. Carosati, A. Neri, M. Frosini, L. Goracci, T.I. Oprea , G. Cruciani. “A novel approach for predicting Pglycoprotein (ABCB1) inhibition using molecular interaction fields” J Med Chem.; 54:1740−1751, 2011.
[58] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J..Feeney “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.” Adv Drug Deliv Rev. 1;46(1-3):3-26. 1997.
[59] G.A. Jeffrey “An introduction to hydrogen bonding”Oxford University Press, USA. 1992; ISBN 0-19-509549.
[60] J.A. Williams, R. Hyland, B.C. Jones, D.A. Smith, S. Hurst, T.C. Goosen, V. Peterkin, J.R. Koup, S.E. Ball “Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios” Drug Metab Dispos. 32:1201–1208. 2004.
[61] M. Kacevska, G.R. Robertson, S.J. Clarke and C. Liddle “Inflammation and CYP3A4-mediated drug metabolism in advanced cancer: impact and implications for chemotherapeutic drug dosing” Expert Opin Drug Metab Toxicol.4: 137-149, 200.
[62] K.E. Lasser, P.D. Allen, S.J. Woolhandler, D.U. Himmelstein, S.M. Wolfe, D.H. Bor “Timing of new black box warnings and withdrawals for prescription medications” JAMA, 287:2215–2220. 2009.
[63] L.C. Wienkers, T.G. Heath “Predicting in vivo drug interactions from in vitro drug discovery data” Nat Rev Drug Discovery. 4(10):825-33, 2005.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation