Full Paper View Go Back
Y. Sordo-Puga1 , T. Sardina-González2 , I. Sosa-Testé3 , P. Naranjo-Valdéz4 , M.P. Rodríguez-Moltó5 , E. Santana-Rodríguez6 , M. Vargas-Hernández7 , M.K. Méndez-Orta8 , D. Pérez-Pérez9 , A. Oliva-Cárdenas10 , A. Magdariaga-Figuerola11 , W. Pena-Guimaraes12 , N. González-Fernández13 , E. Bover-Fuentes14 , R. Segura-Silva15 , C.A. Duarte16 , M.F. Suárez-Pedroso17
Section:Research Paper, Product Type: Journal-Paper
Vol.9 ,
Issue.3 , pp.16-24, Jun-2022
Online published on Jun 30, 2022
Copyright © Y. Sordo-Puga, T. Sardina-González, I. Sosa-Testé, P. Naranjo-Valdéz, M.P. Rodríguez-Moltó, E. Santana-Rodríguez, M. Vargas-Hernández, M.K. Méndez-Orta, D. Pérez-Pérez, A. Oliva-Cárdenas, A. Magdariaga-Figuerola, W. Pena-Guimaraes, N. González-Fernández, E. Bover-Fuentes, R. Segura-Silva, C.A. Duarte, M.F. Suárez-Pedroso . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Y. Sordo-Puga, T. Sardina-González, I. Sosa-Testé, P. Naranjo-Valdéz, M.P. Rodríguez-Moltó, E. Santana-Rodríguez, M. Vargas-Hernández, M.K. Méndez-Orta, D. Pérez-Pérez, A. Oliva-Cárdenas, A. Magdariaga-Figuerola, W. Pena-Guimaraes, N. González-Fernández, E. Bover-Fuentes, R. Segura-Silva, C.A. Duarte, M.F. Suárez-Pedroso, “Shelf Life and Accelerated Stability Studies of Porvac®, a Marker Subunit Vaccine Against Classical Swine Fever,” International Journal of Scientific Research in Biological Sciences, Vol.9, Issue.3, pp.16-24, 2022.
MLA Style Citation: Y. Sordo-Puga, T. Sardina-González, I. Sosa-Testé, P. Naranjo-Valdéz, M.P. Rodríguez-Moltó, E. Santana-Rodríguez, M. Vargas-Hernández, M.K. Méndez-Orta, D. Pérez-Pérez, A. Oliva-Cárdenas, A. Magdariaga-Figuerola, W. Pena-Guimaraes, N. González-Fernández, E. Bover-Fuentes, R. Segura-Silva, C.A. Duarte, M.F. Suárez-Pedroso "Shelf Life and Accelerated Stability Studies of Porvac®, a Marker Subunit Vaccine Against Classical Swine Fever." International Journal of Scientific Research in Biological Sciences 9.3 (2022): 16-24.
APA Style Citation: Y. Sordo-Puga, T. Sardina-González, I. Sosa-Testé, P. Naranjo-Valdéz, M.P. Rodríguez-Moltó, E. Santana-Rodríguez, M. Vargas-Hernández, M.K. Méndez-Orta, D. Pérez-Pérez, A. Oliva-Cárdenas, A. Magdariaga-Figuerola, W. Pena-Guimaraes, N. González-Fernández, E. Bover-Fuentes, R. Segura-Silva, C.A. Duarte, M.F. Suárez-Pedroso, (2022). Shelf Life and Accelerated Stability Studies of Porvac®, a Marker Subunit Vaccine Against Classical Swine Fever. International Journal of Scientific Research in Biological Sciences, 9(3), 16-24.
BibTex Style Citation:
@article{Sordo-Puga_2022,
author = {Y. Sordo-Puga, T. Sardina-González, I. Sosa-Testé, P. Naranjo-Valdéz, M.P. Rodríguez-Moltó, E. Santana-Rodríguez, M. Vargas-Hernández, M.K. Méndez-Orta, D. Pérez-Pérez, A. Oliva-Cárdenas, A. Magdariaga-Figuerola, W. Pena-Guimaraes, N. González-Fernández, E. Bover-Fuentes, R. Segura-Silva, C.A. Duarte, M.F. Suárez-Pedroso},
title = {Shelf Life and Accelerated Stability Studies of Porvac®, a Marker Subunit Vaccine Against Classical Swine Fever},
journal = {International Journal of Scientific Research in Biological Sciences},
issue_date = {6 2022},
volume = {9},
Issue = {3},
month = {6},
year = {2022},
issn = {2347-2693},
pages = {16-24},
url = {https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=2829},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=2829
TI - Shelf Life and Accelerated Stability Studies of Porvac®, a Marker Subunit Vaccine Against Classical Swine Fever
T2 - International Journal of Scientific Research in Biological Sciences
AU - Y. Sordo-Puga, T. Sardina-González, I. Sosa-Testé, P. Naranjo-Valdéz, M.P. Rodríguez-Moltó, E. Santana-Rodríguez, M. Vargas-Hernández, M.K. Méndez-Orta, D. Pérez-Pérez, A. Oliva-Cárdenas, A. Magdariaga-Figuerola, W. Pena-Guimaraes, N. González-Fernández, E. Bover-Fuentes, R. Segura-Silva, C.A. Duarte, M.F. Suárez-Pedroso
PY - 2022
DA - 2022/06/30
PB - IJCSE, Indore, INDIA
SP - 16-24
IS - 3
VL - 9
SN - 2347-2693
ER -
Abstract :
Porvac® subunit vaccine, based on the chimeric E2-CD14 antigen, induces a very early protective immune response against classical swine fever. It is an attractive alternative for modified live vaccines (MLV) in endemic areas. One of the main advantages of subunit vaccines over MLV, especially for low-income settings, is their better thermal stability. This investigation aimed to assess both, shelf life, and accelerated stability of Porvac®. Three batches of Porvac® were stored at 2 - 8 °C for 36 months and their organoleptic properties, rheology, droplet size, the mechanical and thermal stability of the emulsion, immunogenicity, and capacity to confer protection in piglets were evaluated at different time points. A short-term accelerated stability study was also conducted by incubating three different batches at 37 °C for 7 days. Finally, a one-month accelerated stability experiment was conducted with a single vaccine batch. The vaccine maintained its organoleptic properties and droplet size up to at least 36 and 24 months, respectively. The emulsion was mechanically and thermally stable up to at least 9 months, and its rheological parameters remained below the acceptance limits for up to at least 24 months. All vaccinated swine developed neutralizing antibody titers ? 1:1000 at 28 days post-vaccination and were fully protected from the viral challenge at all the time points evaluated. In summary, Porvac® retains the capacity to induce protective neutralizing antibodies after 36 months of shell storage at 2 - 8 °C, and one month at 37 °C.
Key-Words / Index Term :
NPLA; classical swine fever; virus, vaccine, stability, Montanide
References :
[1] A. Postel, S. Austermann-Busch, A. Petrov, V. Moennig, P. Becher. “Epidemiology, diagnosis and control of classical swine fever: Recent developments and future challenges” Transboundary and Emerging Diseases, vol 65 Suppl 1, pp. 248-261, 2018.
[2] I. Greiser-Wilke, V. Moennig. “Vaccination against classical swine fever virus: limitations and new strategies”. Anim Health Res Rev, vol 5, pp. 223-226, 2004.
[3] OIE. “Chapter 3.8.3. Classical swine fever (infection with classical swine fever virus”. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, pp 1-26, 2019.
[4] H. Diaz de Arce, JI. Nunez, L. Ganges, M. Barreras, MT. Frias, F. Sobrino. “Molecular epidemiology of classical swine fever in Cuba”. Virus Res, vol 64, pp. 61-67, 1999.
[5] O. Fonseca, L. Coronado, L. Amarán, CL. Perera, Y. Centelles, DN. Montano, et al., “Descriptive epidemiology of endemic classical swine fever in Cuba”. Spanish Journal of Agricultural Research vol 16, 2, 2018.
[6] S. Jorge, OA. Dellagostin. “The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches”. Biotechnology Research and Innovation” vol 1, pp. 6-13, 2017.
[7] YL. Huang, MC. Deng, FI. Wang, CC. Huang, CY. Chang. “The challenges of classical swine fever control: modified live and E2 subunit vaccines”. Virus Res, vol 179, pp. 1-11, 2014.
[8] Y. Luo, S. Li, Y. Sun, HJ. Qiu. “Classical swine fever in China: a minireview”. Vet Microbiol, vol 172, pp. 1-6, 2014.
[9] J. Van Oirschot. “Vaccinology of classical swine fever: from lab to field”. Veterinary microbiology, vol 96, pp. 367-384, 2014.
[10] DM. Matthias, J. Robertson, MM. Garrison, S. Newland, C. Nelson. “Freezing temperatures in the vaccine cold chain: a systematic literature review”. Vaccine. vol 25, pp. 3980-3986, 2007.
[11] V. Leung, J. Mapletoft, A. Zhang, A. Lee, F.Vahedi, M. Chew, et al., “Thermal Stabilization of Viral Vaccines”, Low-Cost Sugar Films. Scientific Reports, vol 9, pp. 7631, 2019.
[12] RM. Segura-Silva, A. Alfaro-Martinez, D. Salinas-Rodriguez, A. Moreira-Rubio, A. Pérez-Sánchez. “Estudios de estabilidad térmica sobre el ingrediente farmacéutico activo de la vacuna Gavac®”. Biotecnología en el Sector Agropecuario y Agroindustrial, vol 16, pp. 58-66, 2018.
[13] M. Suárez, Y. Sordo, Y. Prieto, M. P. Rodríguez, L. Méndez, E. M. Rodríguez, et al., "A single dose of the novel chimeric subunit vaccine E2-CD154 confers early full protection against classical swine fever virus," Vaccine, vol. 35, pp 4437-43, 2017.
[14] S. Muñoz-González, Y. Sordo, M. Pérez-Simó, M. Suarez, A. Canturri, M. P. Rodriguez, et al., "Efficacy of E2 glycoprotein fused to porcine CD154 as a novel chimeric subunit vaccine to prevent classical swine fever virus vertical transmission in pregnant sows," Veterinary Microbiology, vol. 205, pp. 110-116, 2017.
[15] M. Suárez-Pedroso, Y. Sordo-Puga, I. Sosa-Teste, M. P. Rodriguez-Molto, P. Naranjo-Valdés, T. Sardina-González, et al., "Novel chimeric E2CD154 subunit vaccine is safe and confers long lasting protection against classical swine fever virus," Veterinary Immunology and Immunopathology, vol. 234, p. 110222, 2021
[16] E. Santana-Rodríguez, MK. Méndez-Orta, T. Sardina-González, MP. Rodríguez-Moltó, S. Castell-Brizuela, Y. Sordo-Puga, et al., “Consistency of the Neutralizing Peroxidase Linked Assay for Classical Swine Fever and Homologation with an OIE Reference Laboratory”. International Journal of Scientific Research in Biological Sciences, vol 9, pp. 30-34, 2022.
[17] A. Postel, V. Moennig, P. Becher. “Classical swine fever in Europe: the current situation”. Berl Munch Tierarztl Wochenschr, vol 126, pp. 468-470, 2013.
[18] C. Mittelholzer, C. Moser, JD. Tratschin, MA Hofmann. “Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains.” Vet Microbiol, vol 74, pp. 293-308, 2000.
[19] HT. Tran, DA. Truong, VD. Ly, HT. Vu, TV. Hoang, CT. Nguyen, et al., “The potential efficacy of the E2-subunit vaccine to protect pigs against different genotypes of classical swine fever virus circulating in Vietnam”. Clin Exp Vaccine Res, vol 9, pp. 26-39, 2020.
[20] A. Brun, J. Barcena, E. Blanco, B. Borrego, D. Dory, JM Escribano, et al., “Current strategies for subunit and genetic viral veterinary vaccine development”. Virus Res, vol 157, pp. 1-12, 2011.
[21] CZ. Ng, YL. Lean, SF. Yeoh, QY. Lean, KS. Lee, AK. Suleiman, et al., “Cold chain time- and temperature-controlled transport of vaccines: a simulated experimental study”. Clin Exp Vaccine Res, vol 9, pp. 8-14, 2020.
[22] CL. Karp, D. Lans, J. Esparza, EB. Edson, KE. Owen, CB. Wilson et al., “Evaluating the value proposition for improving vaccine thermostability to increase vaccine impact in low and middle-income countries”. Vaccine, vol 33, pp. 3471-3479, 2015.
[23] AR. Spickler, JA. Roth. “Adjuvants in veterinary vaccines: modes of action and adverse effects”. Journal of Veterinary Internal Medicine / American College of Veterinary Internal Medicine, vol 17, pp. 273-281, 2003.
[24] MT. Singh, D. O`Hagan. “Recent advances in veterinary vaccine adjuvants”. International Journal for Parasitology, vol 33, pp. 469-478, 2003.
[25] V. Gerdts. “Adjuvants for veterinary vaccines-types and modes of action”. Berl Munch Tierarztl Wochenschr, vol 128, pp. 456-463, 2015.
[26] P. Biront, J. Leunen, J. Vandeputte. “Inhibition of virus replication in the tonsils of pigs previously vaccinated with a Chinese strain vaccine and challenged oronasally with a virulent strain of classical swine fever virus”. Veterinary microbiology vol 14, pp. 105-113, 1987.
[27] C. Terpstra, G. Wensvoort. “The protective value of vaccine-induced neutralising antibody titres in swine fever”. Vet Microbiol, vol 16, pp. 123-128, 1988.
[28] A. Boum, AJ. de Smit, EP. de Kluijver, C. Terpstra, RJ. Moormann. “Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus”. Vet Microbiol, vol 66, pp. 101-114, 1999.
[29] WHO. “Temperature sensitivity of vaccines”. Department of Immunization, Vaccines and Biologicals, World Health Organization, pp. 1-62, 2006.
[30] M. Barrera, O. Sanchez, Y. Prieto, S. Castell, P. Naranjo, MP Rodriguez, et al.,. “Thermal stress treatment does not affect the stability and protective capacity of goat milk derived E2-marker vaccine formulation against CSFV”. Veterinary Immunology and Immunopathology, vol 127, pp. 325-331, 2009.
[31] M.Vargas-Hernández, E. Santana-Rodríguez, Y. Sordo-Puga, A. Acosta-Hernández, Y. Fuentes-Rodríguez, D. Pérez-Pérez, et al., “Stability, safety and protective immunity of Gavac® vaccine subjected to heat stress”. Biotecnología Aplicada, vol 35, pp. 1221-1227, 2018.
[32] AP. Miles, HA. McClellan, KM. Rausch, D. Zhu, MD.Whitmore, S.Singh, et al., Montanide® ISA 720 vaccines: quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations. Vaccine, vol 23, 2530-2539, 2005.
[33] L. Coronado, CL. Perera, L. Rios, MT. Frías, LJ. Pérez. “A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions”. Vaccines, 9, 154, 2021.
[34] L. Ganges, HR. Crooke, JA. Bohórquez, A.Postel, Y.Sakoda, P. Becher et al., “Classical swine fever virus: the past, present and future”. Virus Research, vol 289, pp. 198151, 2020.
[35] W. Ji, DD. Niu, HL. Si, NZ. Ding, CQ. He. “Vaccination influences the evolution of classical swine fever virus”. Infection, Genetics and Evolution, 25, 69-77, 2014.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.