Full Paper View

Green synthesis of Silver Nanoparticles using different fruit peels and Comparative analysis of their Antifungal activity

Prathima Panthi1 , S. P. Sreedhar Bhattar2

Section:Research Paper, Product Type: Journal Paper
Vol.06 , Special Issue.01 , pp.0-0, May-2019

CrossRef-DOI:   https://doi.org/10.26438/ijsrbs/v6si1.00

Online published on May 10, 2019

Copyright © Prathima Panthi, S. P. Sreedhar Bhattar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.  

View this paper at   Google Scholar | DPI Digital Library

PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Prathima Panthi, S. P. Sreedhar Bhattar, “Green synthesis of Silver Nanoparticles using different fruit peels and Comparative analysis of their Antifungal activity,” International Journal of Scientific Research in Biological Sciences, Vol.06, Issue.01, pp.0-0, 2019.

MLA Style Citation: Prathima Panthi, S. P. Sreedhar Bhattar "Green synthesis of Silver Nanoparticles using different fruit peels and Comparative analysis of their Antifungal activity." International Journal of Scientific Research in Biological Sciences 06.01 (2019): 0-0.

APA Style Citation: Prathima Panthi, S. P. Sreedhar Bhattar, (2019). Green synthesis of Silver Nanoparticles using different fruit peels and Comparative analysis of their Antifungal activity. International Journal of Scientific Research in Biological Sciences, 06(01), 0-0.

BibTex Style Citation:
@article{Panthi_2019,
author = {Prathima Panthi, S. P. Sreedhar Bhattar},
title = {Green synthesis of Silver Nanoparticles using different fruit peels and Comparative analysis of their Antifungal activity},
journal = {International Journal of Scientific Research in Biological Sciences},
issue_date = {5 2019},
volume = {06},
Issue = {01},
month = {5},
year = {2019},
issn = {2347-2693},
pages = {0-0},
url = {https://www.isroset.org/journal/IJSRBS/full_paper_view.php?paper_id=39},
doi = {https://doi.org/10.26438/ijcse/v6i1.00}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i1.00}
UR - https://www.isroset.org/journal/IJSRBS/full_spl_paper_view.php?paper_id=39
TI - Green synthesis of Silver Nanoparticles using different fruit peels and Comparative analysis of their Antifungal activity
T2 - International Journal of Scientific Research in Biological Sciences
AU - Prathima Panthi, S. P. Sreedhar Bhattar
PY - 2019
DA - 2019/05/10
PB - IJCSE, Indore, INDIA
SP - 0-0
IS - 01
VL - 06
SN - 2347-2693
ER -

Abstract :
The present work aimed to biologically synthesize silver nanoparticles by using the peels of fruits such as Citrus sinensis (Orange) and Punica granatum (Pomegranate) as reducing agents and testing the inhibitory effects of the biologically synthesized silver nanoparticles on two common fungal pathogens of plants- Fusarium sps. and Alternaria sps. The green synthesis of silver nanoparticles was carried out using the aqueous peel extracts of the fruits and the formation of silver nanoparticles was visualized from the colour change of the solutions to dark brown. Further characterization of the nanosilver was carried out by UV/Visible spectrophotometry and the size determination of the nanoparticles was done by SEM analysis. Their antifungal activity was tested against the isolates of Fusarium sps. and Alternaria sps. by using in vitro plate assays such as agar well diffusion assay and mycelial plug method. The results showed that both the peel extracts were potent bioreductants and mediated the synthesis of silver nanoparticles in a short time. Further, the biologically synthesized silver nanoparticles could successfully inhibit the growth of both the phytopathogens tested.

Key-Words / Index Term :
Silver nanoparticles, fruit peels, green synthesis, antifungal property, phytopathogens, Fusarium, Alternaria

References :
[1] Schiro, G., Verch, G., Grimm, V., & MĂĽller, M. (2018). Alternaria and Fusarium Fungi: Differences in Distribution and Spore Deposition in a Topographically Heterogeneous Wheat Field. Journal of Fungi,4(2), 63. doi:10.3390/jof4020063
[2] Escrivá, L., Font, G., & Manyes, L. (2015). In vivo toxicity studies of Fusarium mycotoxins in the last decade: A review. Food and Chemical Toxicology,78, 185-206. doi:10.1016/j.fct.2015.02.005
[3] Lee, H. B., Patriarca, A., & Magan, N. (2015). Alternaria in Food: Ecophysiology, Mycotoxin Production and Toxicology. Mycobiology,43(3),371. doi:10.5941/ myco.2015.43.3.371
[4] Yang, X., Navi, S. S., & Pecinovsky, K. T. (2005). Evaluation of Fungicides for the Control of Cercospora Leaf

Spot, White Mold, and Brown Spot of Soybean. doi:10.31274/farmprogressreports-180814-2690
[5] Namanda, S. (2004). Fungicide application and host-resistance for potato late blight management: Benefits assessment from on-farm studies in S.W. Uganda. Crop Protection. doi:10.1016/s0261-2194(04)00079-1
[6] Aleksandrowicz-Trzcińska, M., & Grzywacz, A. (2014). The effect of fungicides used in the protection of forest tree seedlings on the growth of ectomycorrhizal fungi. Acta Mycologica,32(2), 315-322. doi:10.5586/am.1997.028
[7] O’Brien, P. A. (2017). Biological control of plant diseases. Australasian Plant Pathology,46(4), 293-304. doi:10.1007/s13313-017-0481-4
[8] Fletcher, J. (1988). Innovative approaches to plant disease control. Endeavour,12(2), 95. doi:10.1016/0160-9327(88)90113-5
[9] Herodotus, Thucydides, Adler, M. J., Rawlinson, G., & Crawley, R. (1994). The history of Herodotus. Chicago: Encyclopaedia Britannica.
[10] Ishida, T. (2018). Antibacterial mechanism of Ag ions for bacteriolyses of bacterial cell walls via peptidoglycan autolysins, and DNA damages. MOJ Toxicology,4(5). doi:10.15406/mojt.2018.04.00125
[11] Andisheh, N., & Baserisalehi, M. (2016). Antimicrobial effects of biosynthesized silver nanoparticles produced by Actinomyces spp. based on their sizes and shapes. Malaysian Journal of Microbiology. doi:10.21161/mjm.88516
[12] Rajawat, S., & Mailk, M. (2018). Silver Nanoparticles: Properties, Synthesis Techniques, Characterizations, Antibacterial and Anticancer Studies. doi:10.1115/1.860458
[13] Jo, Y., Kim, B. H., & Jung, G. (2009). Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Disease,93(10), 1037-1043. doi:10.1094/pdis-93-10-1037
[14] Min, J., Kim, K., Kim, S., Jung, J., Lamsal, K., Kim, S., . . . Lee, Y. (2009). Effects of Colloidal Silver Nanoparticles on Sclerotium-Forming Phytopathogenic Fungi. The Plant Pathology Journal,25(4), 376-380. doi:10.5423/ppj.2009.25.4.376
[15] Gaffet, E., Tachikart, M., Kedim, O. E., & Rahouadj, R. (1996). Nanostructural materials formation by mechanical alloying: Morphologic analysis based on transmission and scanning electron microscopic observations. Materials Characterization,36(4-5), 185-190. doi:10.1016/s1044-5803(96)00047-2
[16] Sergeev, B. M., Kasaikin, V. A., Litmanovich, E. A., Sergeev, G. B., & Prusov, A. N. (1999). Cryochemical synthesis and properties of silver nanoparticle dispersions stabilised by poly(2-dimethylaminoethyl methacrylate). Mendeleev Communications,9(4), 130-131. doi:10.1070/mc1999v009n04abeh001080
[17] Biosynthesis of Silver Nanoparticles by Escherichia coli. (2013). Asian Journal of Chemistry,25(3). doi:10.14233/ajchem.2013.12805
[18] Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., & Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters,62(29), 4411-4413. doi:10.1016/j.matlet.2008.06.051
[19] Shankar, S., Ahmad, A., & Sastry, M. (2003). Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles. Biotechnology Progress,19(6), 1627-1631. doi:10.1021/bp034070w
[20] Jha, A. K., Prasad, K., Prasad, K., & Kulkarni, A. (2009). Plant system: Natures nanofactory. Colloids and Surfaces B: Biointerfaces,73(2), 219-223. doi:10.1016/j.colsurfb.2009.05.018
[21] Gurunathan, S. (2015). Biologically synthesized silver nanoparticles enhances antibiotic activity against Gram-negative bacteria. Journal of Industrial and Engineering Chemistry,29, 217-226. doi:10.1016/j.jiec.2015.04.005
[22] Nanda, A., & Saravanan, M. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology and Medicine,5(4), 452-456. doi:10.1016/j.nano.2009.01.012
[23] Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine,3(2), 168-171. doi:10.1016/j.nano.2007.02.001
[24] Khandelwal, N., Kaur, G., Chaubey, K. K., Singh, P., Sharma, S., Tiwari, A., . . . Kumar, N. (2014). Silver nanoparticles impair Peste des petits ruminants virus replication. Virus Research,190, 1-7. doi:10.1016/j.virusres.2014.06.011
[25] Galdiero, S., Rai, M., Gade, A., Falanga, A., Incoronato, N., Russo, L., . . . Ingle, A. (2013). Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine,4303. doi:10.2147/ijn.s50070
[26] Elbeshehy, E. K., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology,6. doi:10.3389/fmicb.2015.00453
[27] Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology and Medicine,5(4), 382-386. doi:10.1016/j.nano.2009.06.005
[28] Gopinath, V., & Velusamy, P. (2013). Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,106, 170-174. doi:10.1016/j.saa.2012.12.087
[29] Mishra, S., Singh, B. R., Singh, A., Keswani, C., Naqvi, A. H., & Singh, H. B. (2014). Biofabricated Silver Nanoparticles Act as a Strong Fungicide against Bipolaris sorokiniana Causing Spot Blotch Disease in Wheat. PLoS ONE,9(5). doi:10.1371/journal.pone.0097881
[30] Reenaa, M., & Menon, A. S. (2017). Synthesis of Silver Nanoparticles from Different Citrus Fruit Peel Extracts and a Comparative Analysis on its Antibacterial Activity. International Journal of Current Microbiology and Applied Sciences,6(7), 2358-2365. doi:10.20546/ijcmas.2017.607.337
[31] Phongtongpasuk, S., & Poadang, S. (2015). Green Synthesis of Silver Nanoparticles Using Pomegranate Peel Extract. Advanced Materials Research,1131, 227-230. doi:10.4028/www.scientific.net/amr.1131.227
[32] Devi, J. S., & Bhimba, B. V. (2014). Antibacterial and Antifungal Activity of Silver Nanoparticles Synthesized using Hypnea muciformis. Biosciences Biotechnology Research Asia,11(1), 235-238. doi:10.13005/bbra/1260
[33] Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., & Lee, Y. S. (2012). Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology,40(1), 53-58. doi:10.5941/myco.2012.40.1.053

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation