Volume-7 , Issue-3 , Jun 2020, ISSN 2455-3174 (Online) Go Back
-
Open Access Article
Characterization and Dissolution Application of Local Clay
Samuel C. Aniaka
Research Paper | Journal-Paper (IJSRCS)
Vol.7 , Issue.3 , pp.1-4, Jun-2020
Abstract
This research was carried out to characterize and investigate the use of local clay found in Delta state for the extraction of pure alumina by the use of HCl and H2SO4 acids. In order to ascertain the most suitable conditions, leaching experiments were conducted under several process variables such as varying; clay to acid ratio (5:100 and 10:100), particle size (600?m and 850?m), dissolution temperature (50˚C, 100˚C and 150˚C), calcination temperature (600˚C and 700˚C) and acid concentrations (0.5M, 1M and 2M). Alumina content was determined using FS 240 Varian Atomic Absorption Spectrophotometer (AAS). Minerals contained in the clay were sorted out by using 1.54056-CuKα1 for 2ϴ arranged by X-Ray power Diffraction (XRD) obtained from International Centre for Diffraction DataKey-Words / Index Term
Alumina Extraction, Calcination, Inorganic Acid Leaching, X-ray Diffraction (XRD)References
[1] I.H. Milne, C.M. Warshaw, ?Methods of Preparation and Control of Clay Mineral Specimens in X-ray Diffraction Analysis,? Gulf Research and Development Company, Pittsburgh, Pennsylvania, Vol. 4, pp. 22 - 30, 1955.
[2] P. Komadel, J. Madejova, ?Acid Activation of Clay Minerals,? Handbook of Clay Science, Vol. 1, pp. 263 - 287, 2006.
[3] P.K. Igbokwe, F.L. Olebunne, M.S. Nwakaudu, ?Effect of Activation Parameters on Conversion in Clay ? Catalysed Esterification of Acetic Acid,? International Journal of Basic & Applied Sciences, Vol. 11, No. 05, 2011.
[4] Preeti Sagar Nayak, B.K. Singh, ?Instrumental Characterization of Clay by XRF, XRD and FTIR,? Indian Academy of Sciences, Vol. 30, No. 3, pp. 235 - 238, 2007.
[5] G.W. Brindley, ?Identification of Clay Minerals by X-Ray Diffraction Analysis,? Clays and Clay Minerals, Vol. 1, pp.119-129, 1952. doi:10.1346/CCMN.1952.0010116.
[6] A.A. Al-Zahrani, M.H. Abdul-Majid, ?Extraction of Alumina from Local Clays by Hydrochloric Acid Process,? Engineering Science Journal of King Abdulaziz Uni, Saudi Arabia, Vol. 20, No. 2, pp. 29-41, 2009.
[7] S. Ziegenbalg, G. Discher, ?Extraction of Alumina from Clay by Hydrochloric Acid Process,? Freiberger Forschungshefte (Reihe) A: pp. 7-25, 1983.
[8] Ibid, ?Investigations into the Alumina Extraction from Clay by Hydrochloric Acid and Sulfuric Acid Leaching,? Light Metals: Proceedings of Sessions, AIME Annual Meeting (Warrendale, Pennsylvania), 1119-1143, 1983.
[9] J.A. Eisele, ?Producing Alumina from Clay by the Hydrochloric Acid Process, A Bench-Scale Study,? U.S Bureau of Mines R.I, No 8476, 1980.
[10] B.D. Cullity, ?Elements of X-Ray Diffraction,? Addison-Wesley Publishing Company, Philippines, pp. 161-187, 1978.
[11] Katherine Ozalas, Benjamin F. Hajek, ?X-Ray Diffraction Analysis of Thin Clay Films from Dilute Suspensions using Glancing Incidence Diffraction,? Clays and Clay Minerals, Vol. 44, No. 6, pp.811-817,1996.Citation
Samuel C. Aniaka, "Characterization and Dissolution Application of Local Clay," International Journal of Scientific Research in Chemical Sciences, Vol.7, Issue.3, pp.1-4, 2020 -
Open Access Article
Inorganic Analysis and Antioxidant Activity of Shilajit
F. Al-Salman, A. Ali Redha, Zahraa Al-Zaimoor
Research Paper | Journal-Paper (IJSRCS)
Vol.7 , Issue.3 , pp.5-10, Jun-2020
Abstract
Shilajit is an ancient Hindu medication of Ayurveda which has many applications worldwide. This study aims to investigate the inorganic content of two common samples from Pakistan and Afghanistan used in the treatment of many diseases in Kingdom of Bahrain. The inorganic phosphate content of Afghani and Pakistani shilajit samples was determined to be 0.133 ?0.004 mg/g and 0.174 ?0.002 mg/g, respectively. Elemental analysis of solid Afghani and Pakistani shilajit samples was determined by energy dispersive x-ray fluorescence (ED-XRF). Afghani shilajit sample mainly comprised of calcium (50.298%), sulfur (21.299%), potassium (17.194%) and chlorine (8.405%) while the Pakistani shilajit mainly comprised of potassium (24.309%), calcium (20.933%), chlorine (18.614%), and silicon (15.197%) with relatively close percentages. Determination of the concentration of minerals and trace metals; As, Pb, Cd, Ag, Al, B, Ba, Cr, Cu, Fe, Mn, Ni, Sb, Se, Zn, P, Ca, K, Mg and Na, in each sample was carried out by inductively coupled plasma-optical emission spectrometry (ICP-OES). According to the ICP-OES analysis, the most significant outcome was the concentration of Ca and K in Afghani shilajit, which were determined to be 30292 and 21587 ppm (equivalent to 30.292 and 21.587 g/L), respectively. The antioxidant activity of both shiljait samples were evaluated by determining 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The antioxidant activity of Afghani and Pakistani shilajit samples were determined to be 96.797 ? 0.561% and 95.297 ? 2.884%, respectively which may indicate strong antioxidant actions.Key-Words / Index Term
shilajit composition, minerals, trace metals, phosphate content, antioxidant activityReferences
[1] C. Carrasco-Gallardo, L. Guzm?n, and R. B. Maccioni, ?Shilajit : A Natural Phytocomplex with Potential Procognitive Activity?, International Journal of Alzheimer?s Disease, Vol. 2012, pp. 1?4, 2012.
[2] V. Cagno, M. Donalisio, A. Civra, C. Cagliero, P. Rubiolo, and D. Lembo, ?In vitro evaluation of the antiviral properties of Shilajit and investigation of its mechanisms of action?, Journal of Ethnopharmacology, Vol. 166, pp. 129?134, 2015.
[3] E. Wilson et al., ?Review on shilajit used in traditional Indian medicine?, Journal of Ethnopharmacology, Vol. 136, No. 1, pp. 1?9, 2011.
[4] B. S. Kwon, A. I. Khlebnikov, I. A. Schepetkin, and S. B. Woo, ?Fulvic acid fractions from mumie?, in Proceedings, Vol. 3, pp. 352?355, 2004.
[5] M. S. Musthafa et al., ?Ameliorative efficacy of bioencapsulated Chironomous larvae with Shilajit on Zebrafish ( Danio rerio ) exposed to Ionizing radiation?, Applied Radiation and Isotopes, Vol. 128, pp. 108?113, 2017.
[6] M. S. Musthafa et al., ?Effect of Shilajit enriched diet on immunity, antioxidants, and disease resistance in Macrobrachium rosenbergii (de Man) against Aeromonas hydrophila?, Fish & Shellfish Immunology, Vol. 57, pp. 293?300, 2016.
[7] A. Ali Redha, A. M. Hasan, and Q. Mandeel, ?Phytochemical Determinations of Pomegranate (Punica granatum) Rind and Aril Extracts and their Antioxidant, Antidiabetic and Antibacterial Activity?, Nat Prod Chem Res, Vol. 06, No. 04, 2018.
[8] R. Korać and K. Khambholja, ?Potential of herbs in skin protection from ultraviolet radiation?, Phcog Rev, Vol. 5, No. 10, p. 164, 2011.
[9] I. Rehan, R. Muhammad, R. Kamran, K. Karim, and S. Sultana, ?Quantitative Analysis of Shilajit using Laser-Induced Breakdown Spectroscopy and Inductively Coupled Plasma/Optical Emission Spectroscopy?, J Nutr Food Sci, Vol. 7, No. 4, 2017.
[10] S. Das and D. Choudhuri, ?Dietary calcium regulates the insulin sensitivity by altering the adipokine secretion in high fat diet induced obese rats?, Life Sciences, Vol. 250, p. 1-12, 2020.
[11] A. Rege, P. Juvekar, and A. Juvekar, ?IN VITRO ANTIOXIDANT AND ANTI-ARTHRITIC ACTIVITIES OF SHILAJIT?, International Journal of Pharmacy and Pharmaceutical Sciences,Vol. 4, No. 2, pp. 650?653, 2012.Citation
F. Al-Salman, A. Ali Redha, Zahraa Al-Zaimoor, "Inorganic Analysis and Antioxidant Activity of Shilajit," International Journal of Scientific Research in Chemical Sciences, Vol.7, Issue.3, pp.5-10, 2020 -
Open Access Article
Adsorption of Nylosan Red onto Grapes Cores-based Activated Carbon
M. Hamzaoui, B. Bestani, N. Benderdouche, Z.Mekkibes, O. Douinat
Research Paper | Journal-Paper (IJSRCS)
Vol.7 , Issue.3 , pp.11-19, Jun-2020
Abstract
The aim of this study is to evaluate effectiveness of activated carbons prepared from grapes cores chemically activated using Calcium chloride (CaCl2), Phosphoric acid (H3PO4) and Potassium hydroxide (KOH) as oxidizing agents representing GC-1, GC-2 and GC-3 adsorbents respectively in order to remove Nylosan Red (NR) dye from simulated wastewater. Both linear and non-linear forms were used for the evaluation of two common isotherm models, Langmuir and Freundlich isotherms parameters. In order to justify the validity of the values, statistical aspects for both forms were checked by considering R2 for best fit linear isotherm and P-Values and other important errors functions such as Chi-square statistic & Root mean square error and Average percentage error for non-linear regression method. High removal efficiencies of 90.5 % and 98 % NR at adsorbent dose (4 g/L) and initial dye concentration (100 mg/L) were obtained by GC-2 and GC-3 respectively. However, 88.31 % removal was obtained by GC-1 using adsorbent dose (8 g/L). The best fit for Freundlich model in its linear form, was well represented by NR adsorption onto GC-3 with a capacity of 28.146 mg/g, with very low errors function values, while GC-1 and GC-2 were moderate. Non-linear Freundlich isotherm models present a good results compared to linear models in terms of adsorption energy, the most important is related to the adsorption of NR by GC-3 with a value equal to 42.57 mg/g, also as a finding the adsorption of NR by GC-1 presents a low but acceptable adsorption capacity compared to the adsorption isotherm using GC-2 and GC-3.Key-Words / Index Term
Modals; Dyes; Adsorbent; Langmuir; Freundlich; IsothermsReferences
[1] I.Langmuir, ?The adsorption of gases on plane surfaces of glass, mica, and platinum,? J.Am.Chem.Soc. Vol.40, pp.1361-1368, 1918.
[2] H.Freundlich, ?Adsorption in solution,? Phys.Chem.Soc. Vol.40, pp.1361-1368, 1906.
[3] C.Theivarasu, S.Mylsamy, ?Equilibrium and kinetic adsorption studies of Rhodamine-B from aqueous solutions using cocoa (Theobroma cacao) shell as a new adsorbent,? International Journal of Engineering Science and Technology, Vol.2, Issue.11, pp.6284-6292, 2010.
[4] Busetty Subramanyam and Ashutosh Das, ?Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means,? Journal of Environemnt Health Science&Engineering.
[5] Mansooreh Dehghani, Simin Nasseri and Mojtaba Karamimanesh1, ?Removal of 2,4-Dichlorophenolyxacetic acid (2,4-D) herbicide in the aqueous phase using modified granular activated carbon?, Journal of Environemnt Health Science&Engineering.
[6] Yuh-Shan Ho, ? Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods,? Polish Journal of Environmental Studies , Vol. 15, Issue.1, pp.81-86, 2006.
[7] Harrison,Ferrin;Katti,S.K, ?Optimal Design in and Hazards of linearization of Langmuir?s Nonlinear Model.? Int. J. Environ. Sci. Tech., Vol.6, Issue. 3, pp.451-456, 2009.
[8] Hoda Roushdy Guendy, ?Treatment and Reuse of Wastewater in the Textile Industry by Means of Coagulation and Adsorption Techniques,? Journal of Applied Sciences Research, Vol.6, Issue.8, pp.964-972, 2010.
[9] John U. Kennedy Oubagaranadin, Z.V.P. Murthy and P.S. Rao. ?Applicability of Three-parameter Isotherm Models for the Adsorption of Mercury on Fuller?s Earth and Activated Carbon,? INDIAN CHEMICAL ENGINEER, Indian Institute of Chemical Engineers.Vol. 49, Issue. 3, pp.196-204, 2007.
[10] Lev.D.Gelb and K.E.Gubbins, ?Characterization of Porous Glasses:Simulation Models, Adsorption Isotherms, and the Brunauer-Emmett-Teller Analysis Method,? American Chemical Society. Vol.14, pp.2097-2111, 1997.
[11] M. A. Mumin; M. M. R. Khan; K. F. Akhter; M. J. Uddin, ?Potentiality of open burnt clay as an adsorbent for the removal of Congo red from aqueous solution,? Int. J. Environ. Sci. Tech, Vol.4, Issue.4, pp.525-532, 2007.
[12] Mas Rosemal Hakim Mas Haris, and Kathiresan Sathasivam, ?The Removal of Methyl Red from Aqueous Solutions Using Banana Pseudostem Fibers,? American Journal of Applied Sciences, Vol.6, Issue.9, pp.1690-1700, 2009.
[13] M.R. Samarghandi, M. Hadi,S. Moayedi, F. Barjasteh Askari, ?Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon,? Iran. J. Environ. Health. Sci.Eng, Vol.6, Issue.4, pp.285-29, 2009.
[14] Rajeshwari Sivaraj. R.Venckatesh. Gowri. G.Sangeetha, ?Activated carbon prepared from eichornia crassipes as an adsorbent for the removal of dyes from aqueous solution,? International Journal of Engineering Science and Technology, Vol.2, Issue.6, pp.2418-2427, 2010.
[15] Shih-Chin Tsai,Kai-Wei Juang, ?Comparison of linear and non linear forms of isotherm models for strontium sorption on a sodium bentonite clear Chemistry,? Journal of Radioanalytival and Nu, Vol.243, Issue.3, pp.741-746, 2000.
[16] Alok Mittal , Lisha Kurup, Jyoti Mittal, ?Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers,? Journal of Hazardous Materials, Vol.146, pp.243?248, 2007.
[17] B.Subramanyam; A. Das. School of Civil Engineering, SASTRA University, Thanjavur, India.Int.Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil. J. Environ. Sci. Tech, Vol.6, Issue.4, pp.633-640, 2009.
[18] B Barkhordar , M Ghiasseddin, ?Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum,? Iranian J Env Health Sci Eng, Vol.1, No.2, 2004.
[19] Okeola F.O. And Odebunmi E.O, ?Freundlich and Langmuir Isotherms Parameters for Adsorption of Methylene Blue by Activated Carbon Derived from Agrowastes? Advances in Natural and Applied Sciences, Vol.4, Issue.3,pp.281-288, 2010.
[20] Pawan P. Kalbende, ?Sorption Investigation of Metal Ions by Copolymers with Respect to pH, Time and in Media of Different Ionic Strength?, International Journal of Scientific Research in Chemical Sciences (IJSRCS), Vol.7, Issue.1, pp.23-26,2020.
[21] J.H. Hodgkin, R. Eibl, ?Ferric ion chelation by aminophenol resins?, Reactive polymers, Ion exchangers, sorbents, Vol. 4, Issue.4, pp. 285-291, 1986.
[22] J.E. Greenleaf, A.K. SenGupta, ?Carbon dioxide regeneration of ion exchange resins and fibers?, Solvent Extraction and Ion Exchange, Vol.30, pp.350-371, 2012.Citation
M. Hamzaoui, B. Bestani, N. Benderdouche, Z.Mekkibes, O. Douinat, "Adsorption of Nylosan Red onto Grapes Cores-based Activated Carbon," International Journal of Scientific Research in Chemical Sciences, Vol.7, Issue.3, pp.11-19, 2020 -
Open Access Article
Graphene and Its Composites Used In Research of Dental and Oral Infection
Shaloo, Vaishali, Sakshi, Siddhartha Dan
Survey Paper | Journal-Paper (IJSRCS)
Vol.7 , Issue.3 , pp.20-34, Jun-2020
Abstract
This thorough review summarizes the progressing aspects in the usage of graphene oxide and functionalized graphene oxide in dentistry and oral investigation. The current review reveals that graphene oxide has been utilized to prepare a variety of functionalized nanoparticles and advanced nanocomposites transporters. Graphene oxide shows potential in a variety of research regions, for instance, tooth bleaching, antimicrobial activity, tooth erosion, teeth implants, tooth aches, drug delivery at the particular site. All these utilizations of graphene oxide to biomedicine is exceptional and reassuring. Graphene oxide usage in dental has provided surprising outcomes in anti-microbial activity, Bone tissue building, regenerative dental, advancing dentistry biological materials and in the treatment of oral cancer. The biocompatibilities of graphene oxide and its nanomaterial make them potential units in bone regeneration, osseointegration, and cell multiplication. Moreover, its antibiofilm and antiadhesion properties encouraged researchers to make graphene oxide for biofilm. Nanostructures are used in advancements or investigation of dental and nanocomposite is used for oral ailment preventive drugs, prostheses and for teeth implantation. Nanomaterials further utilized as an oral liquid or medication, preventing and easing some oral disease and keep up oral healthKey-Words / Index Term
Oxide, Graphene oxide nanoparticle, Teeth, Streptococcus mutans, Anti-microbial ActivityReferences
[1] Gao, L., Xu, T., Huang, G., Jiang, S., Gu, Y., & Chen, F., ?Oral microbiomes: more and more importance in oral cavity and whole body,? Protein & Cell, Vol.9, Issue.5, pp.488?500, 2018. doi:10.1007/s13238-018-0548-1
[2] He, J., Zhu, X., Qi, Z., Wang, C., Mao, X., Zhu, C., Tang, Z., ?Killing Dental Pathogens Using Antibacterial Graphene Oxide,? ACS Applied Materials & Interfaces, Vol.7, Issue.9, pp.5605?5611, 2015. doi:10.1021/acsami.5b01069
[3] W.G. Wade, ?The Oral Microbiome in Health and Disease,? Pharmacological Research, Vol. 69, Issue.,1, pp.137-143, 2013. doi: 10.1016/j.phrs.2012.11.006
[4] M.A. Ghannoum, R.J. Jurevic, P.K. Mukherjee, F. Cui, M. Sikaroodi, A. Naqvi, et al. ?Characterization of the oral fungal microbiome (mycobiome) in healthy individuals,? PLOS Pathogens, Vol.6, Issue.,1, 2010doi: 10.1371/journal.ppat.1000713
[5] A. K. Dupuy, M. S. David, Lu L., T.N. Heider, J.D. Peterson, E.A. Montano, et. al. ?Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of malassezia as a prominent commensal,? PLOS ONE, Vol.1, Issue.,3, 2014doi: 10.1371/journal.pone.0090899
[6] P.K Mukherjee, J. Chandra, M. Retuerto, M. Sikaroodi, R.E. Brown, R. Jurevic, et al., ?Oral mycobiome analysis of hiv-infected patients: identification of Pichia as an antagonist of opportunistic fungi,? PLoS Pathogens, Vol. 10, Issue.,3, 2014. doi: 10.1371/journal.ppat.1003996
[7] B. P Krom, S. Kidwai, J.M. Ten Cate, ?Candida and other fungal species: forgotten players of healthy oral microbiota,? Journal of Dental research, Vol. 93, Issue.,5, pp.445?451, 2014.doi: 10.1177/0022034514521814
[8] R. J. Jr. Palmer, ?Composition and development of oral bacterial communities,? Periodontology 2000, Vol.64, Issue.,1, pp.20?39, 2014.doi: 10.1111/j.1600-0757.2012. 00453.x
[9] Y. Zhou, H. Gao, K.A. Mihindukulasuriya, P.S. La Rosa, K.M. Wylie, T. Vishnivetskaya, et al. ?Biogeography of the ecosystems of the healthy human body,? Genome Biology, Vol.14, Issue.,1: R1, 2013.doi: 10.1186/gb-2013-14-1-r1
[10] Zaura, E., Nicu, E. A., Krom, B. P., & Keijser, B. J. F., ?Acquiring and maintaining a normal oral microbiome: current perspective,? Frontiers in Cellular and Infection Microbiology, Vol.4, 2014. doi:10.3389/fcimb.2014.00085
[11] M. Kilian, I.L. Chapple, M.Hannig, P.D. Marsh, V. Meuric, A.M. Pedersen, M.S. Tonetti, W.G. Wade, E. Zaura, ?The oral microbiome?an update for oral healthcare professionals,? British Dental Journal, Vol.221, pp657?666, 2016. doi: https://doi.org/10.1038/sj.bdj.2016.865
[12] K.S. Fakhruddin, H.C. Ngo, L.P. Samaranayake, ?Cariogenic microbiome and microbiota of the early primary dentition: A contemporary overview,? Oral Diseases, Vol.25, Issue.,4, pp.982-995, 2019. doi: https://doi.org/10.1111/odi.12932
[13] S. Hasan, K. Singh, M. Danisuddin, P.K. Verma, A.U. Khan, ?Inhibition of major virulence pathways of Streptococcus mutans by quercitrin and deoxynojirimycin: a synergistic approach of infection control,? PLOS ONE, Vol.9, Issue.,3,2014. doi: https://doi.org/10.1371/journal.pone.0091736
[14] J. Abranches, J.H. Miller, A.R. Martinez, P.J. Simpson-Haidaris, R.A. Burne, J.A. Lemos, ?The collagen-binding protein cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells,? Infect Immune, Vol.79, Issue.,6, pp.2277?2284, 2011. doi: 10.1128/IAI.00767-10
[15] A. Dmitriev, S.S. Mohapatra, P. Chong, M. Neely, S. Biswas, I. Biswas, ?CovR controlled global regulation of gene expression in Streptococcus mutant,? PLOS ONE,Vol.6, Issue.,1,2011.doi: doi:10.1371/journal.pone.0020127
[16] H. Koo, M.F. Hayacibara, B.D. Schobel, J.A. Cury, P.L. Rosalen, Y.K. Park, A.M. Vacca-smith, W.H. Bowen, ?Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol,? Journal of Anti microbiology Chemotherapy, Vol.52, Issue.5, pp.782?789. Doi:https://doi.org/10.1093/jac/dkg449
[17] J.E. Krol,S. Biswas, C. King, I. Biswas, ?SMU.746SMU.747 a putative membrane permease complex is involved in aciduricity acidogenesis and biofilm formation in Streptococcus mutans,? Journal of Bacteriology.Vol.196, pp.129?139, 2014. Doi: 10.1128/JB.00960-13
[18] W. J. Loesche, ?Role of Streptococcus mutans in Human Dental Decay,? Microbiology Reviews, Vol.50, Issue.4, pp.353, 1986. Doi?
[19] L.A. Ximénez-Fyvie, A.D.Haffajee, S.S Socransky, ?Comparison of the Microbiota of Supra-and Subgingival Plaque in Health and Periodontitis,? Journal Clinical Periodontology, Vol.27, Issue.9, pp.648-657,2000.doi:https://doi.org/10.1034/j.1600-051x.2000.027009648.x
[20] B.J. Paster, S.K.Boches, J.L. Galvin, R.E. Ericson, C.N. Lau, V.A. Levanos, A. Sahasrabudhe, F.E. Dewhirst, ?Bacterial Diversity in Human Subgingival Plaque,? Journal of Bacteriology, Vol.183,Issue.12,pp.3770-3783, 2001.doi: 10.1128/JB.183.12.3770-3783.2001
[21] B.P.F.A.Gomes, E.T. Pinheiro, C.Gadê-Neto, E. Sousa, C.Ferraz, A.Zaia, F. Teixeira, F. Souza-Filho,? Microbiological Examination of Infected Dental Root Canals,? Oral Microbiology Immunology,Vol.19,Issue.2pp.71-76, 2004.
doi: https://doi.org/10.1046/j.0902-0055.2003.00116.x
[22] P.M. Ajayan, O.Z. Zhou, ?Applications of carbon nanotubes,? Carbon Nanotubes, Vol.80, pp.391?425, 2001.doi: https://doi.org/10.1007/3-540-39947-X_14
[23] R.A.Mcintyre, ?Common nano-materials and their use in real world applications,? ScienceProgresss, Vol.95, Issue. 1, pp.1-22, 2001.
doi: https://doi.org/10.3184/003685012X13294715456431
[24] C. Pacholski, C. Yu,G.M. Miskelly, D. Godin, M.J. Sailor,?Reflective interferometric fourier transform spectroscopy: a self-compensating label-free immunosensor using double-layers of porous SiO2,? Journal of American Chemical Society, Vol. 128, Issue.13, pp.4250-4252, 2006.
doi: https://doi.org/10.1021/ja056702b
[25] M. Paulose,K. Shankar, S. Yoriya,?Anodic growth of highly ordered TiO2 nanotube arrays to 134?m in length,? The Journal of Physical Chemistry B, Vol.110,Issue.33,pp.16179-16184, 2006.doi: https://doi.org/10.1021/jp064020k
[26] Kane, C. L., ?Erasing electron mass,? Nature, Vol.438, Issue.7065, pp.168?170, 2005. doi:10.1038/438168a
[27] F. Bonaccorso, Z. Sun,T. Hasan, A. Ferrari, ?Graphene photonics andnoptoelectronics? Nature Photon,Vol. 4, pp.611?622, 2010.doi:https://doi.org/10.1038/nphoton.2010.186
[28] M. Xu, D. Fujita, N. Hanagata, ?Perspectives and challenges of emerging single-molecule DNA sequencing technologies,? Small,Vol. 5, Issue.23, pp.2638?2649, 2009.doi: 10.1002/smll.200900976
[29] M.D Stoller, S. Park, Y. Zhu, J. An ,R.S Ruoff, ?Graphene-based ultracapacitors,? Nano Letters, Vol.8, Issue.10, pp.3498?3502,2008.doi: https://doi.org/10.1021/nl802558y
[30] W. Hu,C. Peng, W. Luo, et al., ?Graphene-based antibacterial paper,? ACS Nano, Vol.4,Issue.7, pp.4317?4323, 2010.doi: 10.1021/nn101097v
[31] I.E.M. Carpio, C.M. Santos, X. Wei, D.F. Rodrigues, ?Toxicity of a polymer?graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells,? Nanoscale, Vol.4, pp.4746?4756, 2012.doi: https://doi.org/10.1039/C2NR30774J
[32] C.E. Misch, ?Dental Implant Prosthetics-E-Book?, Elsevier Health Sciences, 2014.
[33] S. Kulshrestha, S. Khan, R. Meena, B.R. Singh, A.U. Khan, ?A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans,? Biofouling,Vol.30, Issue.10, pp.1281?1294, 2014.doi: 10.1080/08927014.2014.983093
[34] P. Bartolo, J.P. Kruth, J. Silva, et al., ?Biomedical production of implants by additive electro-chemical and physical processes,? CIRP Annals Manufacturing and Technology, Vol.61, Issue.2, pp.635?655, 2012.doi: https://doi.org/10.1016/j.cirp.2012.05.005
[35] M.C. Wu, A.R. Deokar,J. H. Liao, P. Shih, Y. Ling, ?Graphene based photothermal agent for rapid and effective killing of bacteria,? ACS Nano, Vol.7, Issue.2, pp.1281?1290, 2013.doi: https://doi.org/10.1021/nn304782d
[36] K. Dai, L. Lub, C. Liang, J. Dai, G. Zhua, Z. Liua, Q. Liua, Y, Zhang, ?Graphene oxide modified ZnO nanorods hybrid with high reusable photocatalytic activity under UV-LED irradiation,? Materials Chemistry and Physics, Vol.143, Issue.3, pp.1410?1416, 2014.
doi: https://doi.org/10.1016/j.matchemphys.2013.11.055
[37] I. Ocsoy, M.L. Paret, M.A. Ocsoy, S. Kunwar, T. Chen, M. You, W. Tan, ?Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans,? ACS Nano, Vol.7, Issue.10, pp.8972?8980, 2013.doi: 10.1021/nn4034794
[38] Y. Wang, Z.H. Li, J. Wang, J.H. Li, Y.H. Lin, ?Graphene and graphene oxide: biofunctionalization and applications in biotechnology,? Trends in Biotechnology, Vol.29,Issue.5, pp.205?212.doi:10.1016/j.tibtech.2011.01.008
[39] J. Ma, J. Zhang, Z. Xiong, Y. Yong, X.S. Zhao,?Preparation characterization and antibacterial properties of silver-modified graphene oxide,? Journals of Materials Chemistry, Vol.21, Issue.10 pp.3350?3352,2011.doi: https://doi.org/10.1039/C0JM02806A
[40] W.P. Xu, L.C. Zhang, J.P. Li, Y. Lu, H.H. Li, Y.N. Ma, W.D. Wang, S.H. Yu,?Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties,? Journal of Materials Chemistry, Vol.21,Issue.12, pp.4593?4597, 2011.doi: https://doi.org/10.1039/C0JM03376F
[41] J. Tang,Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, R. Peng, ?Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms? ACS Applied Material & Interfaces, Vol.5,Issue.9, pp.3867?3874,2013. doi: https://doi.org/10.1021/am4005495
[42] A.F.D. Fariaa, D.S.T. Martinez, S.M.M. Meira, A.C.M.D. de Moraes, A. Brandelli, A.G.S. Filho, O.L. Alves, ?Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets,? Colloids Surfaces B: Biointerfaces, Vol.113, pp.115?124, 2014.doi: https://doi.org/10.1016/j.colsurfb.2013.08.006
[43] Y. Chang, S.T. Yang, J.H. Liu, E. Dong, Y.W.A. Cao, Y. Liu, H. Wang, ?In vitro toxicity evaluation of graphene oxide on A549 cells,? Toxicology Letters, Vol.200, Issue. 3, pp.201?210, 2011.doi: https://doi.org/10.1016/j.toxlet.2010.11.016
[44] Kulshrestha, S., Khan, S., Meena, R., Singh, B. R., & Khan, A. U., ?A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans,? Biofouling, Vol.30, Issue.10, pp.1281?1294, 2014. doi:10.1080/08927014.2014.983093.
[45] W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, ?Graphene-based Antibacterial Paper,? ACS Nano , Vol.4, Issue.7 pp.4317− 4323, 2010.doi:https://doi.org/10.1021/nn101097v
[46] L. Hui, J.G. Piao, J. Auletta, K. Hu, Y. Zhu, T. Meyer, H. Liu, L. Yang, ?Availability of the Basal Planes of Graphene Oxide Determines whether it is Antibacterial,? ACS Applied Materials &Interfaces, Vol.6, Issue.19, pp.13183−13190, 2014.doi: 10.1021/am503070z
[47] K.V. Krishna, C. Ménard-Moyon, S. Verma, A. Bianco, ?Graphene-based Nanomaterials for Nanobiotechnology and Biomedical Applications,? Nanomedicine, Vol.8, Issue.10, pp.1669−1688, 2013.doi:10.2217/nnm.13.140
[48] J. Zhao, B. Deng, M.Lv, J. Li, Y.Zhang, H. Jiang, C. Peng, J. Li, J. Shi, Q. Huang, C. Fan,? Graphene Oxide-based Antibacterial Cotton Fabrics,? Advanced Healthcare Materials, Vol.2, Issue.9, pp.1259−1266, 2013.doi:https://doi.org/10.1002/adhm.201200437
[49] S. Kulshrestha, S. Khan, R. Meena, B.R. Singh, A.U. Khan, ?A Graphene/zinc Oxide Nanocomposite Film Protects Dental Implant Surfaces Against Cariogenic Streptococcus mutans,? Biofouling,Vol.30, Issue.10,pp.1281−1294, 2014.doi:10.1080/08927014.2014.983093
[50] M. Olivi, E.Zanni, G. De Bellis, C.Talora, M.S. Sarto, C. Palleschi, E. Flahaut, M. Monthioux, S. Rapino, D. Uccelletti,et.al., ?Inhibition of microbial growth by carbon nanotube networks,? Nanoscale, Vol.5,Issue.19,pp.9023?9029, 2013.doi: https://doi.org/10.1039/C3NR02091F
[51] O. Akhavan, E. Ghaderi, ?Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation,?The Journal of Physics Chemistry, Vol.113, pp.20214?20220, 2009. doi:https://doi.org/10.1021/jp906325q
[52] J. Liu, L. Liu, H. Bai, Y. Wang, D.D. Sun, ?Gram-scale production of graphene oxide-TiO2 nanorod composites: Towards high-activity photocatalytic materials,? Applied Catalysts B. Environmental, Vol.106, Issue.1-2, pp.76?82, 2011.
doi: https://doi.org/10.1016/j.apcatb.2011.05.007
[53] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, ?Graphene and Graphene Oxide: Synthesis, Properties, and Applications,? Advanced Materials, Vol. 22,pp.3906−3924, 2010.doi:10.1002/adma.201001068
[54] S. Stankovich, D. A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, ?Graphene-based composite materials,? Nature, Vol.442,Issue.7100, pp.282?286, 2006.doi:10.1038/nature04969
[55] A.K. Geim, ?Graphene: Status and Prospects,? Science, Vol.324, pp.1530?1534, 2009. doi: 10.1126/science.1158877
[56] G. De Bellis, A. Tamburrano, A.Dinescu, M.L.Santarelli, M.S. Sarto, ?Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency,? Carbon, Vol.49, Issue.35, pp.4291?4300, 2011.doi: https://doi.org/10.1016/j.carbon.2011.06.008
[57] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, ?Graphene and Graphene Oxide: Synthesis, Properties, and Applications,? Advanced Materials, Vol.22,Issue.35,pp.3906?3924, 2010.doi: https://doi.org/10.1002/adma.201001068
[58] X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, ?Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,? Small(Weinheim an der Bergstrasse, Germany),Vol.7, Issuue.14, pp.1876?1902, 2011.doi: 10.1002/smll.201002009
[59] H.J. Jiang, ?Chemical Preparation of Graphene-Based Nanomaterials and Their Applications in Chemical and Biological Sensors,? Small, Vol.7, Issue.17, pp.2413?2427, 2011.doi:https://doi.org/10.1002/smll.201002352
[60] S. Guo, S.J. Dong, ?Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications,? Chemical Society Reviews,Vol.40, pp.2644?2672, 2011.doi: https://doi.org/10.1039/C0CS00079E
[61] X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, ?Nano-graphene oxide for cellular imaging and drug delivery,? Nano Research, Vol.1, Issue.3pp.203?212, 2008.doi: 10.1007/s12274-008-8021-8
[62] W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, ?Graphene-Based Antibacterial Paper,? ACS Nano, Vol.4, Issue.7, pp.4317?4323, 2010.doi: https://doi.org/10.1021/nn101097v
[63] K. Yang, S. zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, ?Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy,? Nano Letters, Vol.10, pp.3318?3323, 2010.doi: https://doi.org/10.1021/nl100996u
[64] E. Zanni, G. De Bellis, M.P. Bracciale, A. Broggi, M.L. Santarelli, M.S. Sarto, C. Palleschi, D. Uccelletti, ?Graphite Nanoplatelets and Caenorhabditis elegans: Insights from an in Vivo Model,? Nano Letters, Vol.12, Issue. 6, pp.2740?2744, 2012.doi: https://doi.org/10.1021/nl204388p
[65] I. Rago, A. Bregnocchi, E. Zanni, A.G. D?Aloia, F. de Angelis, M. Bossu, G. De Bellis, A. Polimeni, D. Uccelletti, M.S. Sarto, ?Antimicrobial activity of graphene nanoplatelets against Streptococcus mutans,? Material Science ,2015.Doi:10.1109/NANO.2015.7388945
[66] Zanni, E., Chandraiahgari, C., De Bellis, G., Montereali, M., Armiento, G., Ballirano, P., Uccelletti, D., ?Zinc Oxide Nanorods-Decorated Graphene Nanoplatelets: A Promising Antimicrobial Agent against the Cariogenic Bacterium Streptococcus mutans,? Nanomaterials, Vol.6, Issue.10, pp.179. doi:10.3390/nano6100179.
[67] P.T. Yin, S. Shah, M. Chhowalla, K.B. Lee,?Design, synthesis, and characterization of graphene?nanoparticle hybrid materials for bioapplications,? Chemical Reviews, Vol.115, Issue.7, pp.2483?2531, 2015.doi: https://doi.org/10.1021/cr500537t
[68] Q. Li, N. Mahmood, J. Zhu, Y. Hou, S. Sun, ?Graphene and its composites with nanoparticles for electrochemical energy applications,? Nano Today, Vol.9, Issue.5, pp.668?683, 2014doi:https://doi.org/10.1016/j.nantod.2014.09.002
[69] S. Sava,A.Tonea, B. Stanca, C. Alb,C. Sarosi, D. Dudea,?The study of new composites with graphene used in dentistry,? Studia Universitatis Babes-BolyaiChemia, Vol.60,Issue. 2, pp.71-80 2015.
[70] C. Sarosi,A.R. Biris, A. Antoniac,?The nanofiller effect on properties of experimental graphene dental nanocomposites,? Journal of Adhesion Science and Technology,Vol.30, Issue.16, pp.1779?1794, 2016.doi:10.1080/01694243.2016.1161969
[71] S. Sava, M. Moldovan, C. Sarosi, A. Mesaros, D. Dudea,C.Alb,?Effects of graphene addition on the mechanical properties of composites for dental restoration,? MaterialePlastice, Vol.52,Issue.1, pp.90?92, 2015.doi: ?
[72] J. He, X. Zhu, Z. Qi, ?Killing dental pathogens using antibacterial graphene oxide,? ACS Applied Materials & Interfaces, Vol.7, Issue. 9 pp. 5605?5611, 2015.doi:10.1021/acsami.5b01069
[73] P. Kimar, P. Huo, R. Zhang, B. Liu, ?Antibacterial properties of Graphene Based Nanomaterials,? Nanomaterials, Vol.9, Issue.5, pp.737, 2019. doi: 10.3390/nano9050737
[74] S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, J.H. Kim, ?Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa,? International journal of nanomedicine, Vol.7, pp.5901-5914, 2012.doi: 10.2147/IJN.S37397
[75] S. Gurunathan, J.W. Han, A.A. Dayem, V. ppakayala, M.R. Park, D.N. Kwon, J.H. Kim, ?Antibacterial activity of dithiothreitol reduced graphene oxide,?Journal of Industrial and Engineering Chemistry, Vol.19, Issue. 4, pp.1280?1288, 2013.
doi: https://doi.org/10.1016/j.jiec.2012.12.029
[76] I. Sengupta, P. Bhattacharya, M. Talukdar, S. Neogi, S.K. Pal, S. Chakraborty, ?Bactericidal effect of graphene oxide and reduced graphene oxide: Influence of shape of bacteria,? Colloid and Interface Science Communications, Vol.28, pp.60?68, 2019.doi: https://doi.org/10.1016/j.colcom.2018.12.001
[77] B. K. Kim, Y.L. Jo, J.J. Shim, ?Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites,? The Journal of Supercritical Fluids, Vol.72, pp.28?35, 2012. Doi: https://doi.org/10.1016/j.supflu.2012.08.005
[78] C.H. Deng, J.L. Gong, L.L. Ma, G.M. Zeng, B. Song, P. Zhang, S.Y. Huan, ?Synthesis, characterization and antibacterial performance of visible light-responsive Ag3PO4 particles deposited on graphene nanosheets,? Process Safet& Environmental Protection, Vol.106, pp.246?255, 2017.doi:https://doi.org/10.1016/j.psep.2017.01.009
[79] M. Moghayedi, E.K.Goharshadi, K. Ghazvini, H. Ahmadzadeh, L. Ranjbaran, R. Masoudi, R. Ludwig, ?Kinetics and mechanism of antibacterial activity and cytotoxicity of Ag-RGO nanocomposite,? Colloids and Surafces B. Biointerfaces, Vol.159,pp.366?374, 2017.doi:10.1016/j.colsurfb.2017.08.001
[80] T. Kavitha, A.I. Gopalan, K.P. Lee, S.Y. Park, ?Glucose sensing, photocatalytic and antibacterial properties of graphene?ZnO nanoparticle hybrids,? Carbon,Vol.50,Issue.8, pp.2994?3000, 2012.doi: https://doi.org/10.1016/j.carbon.2012.02.082
[81] L.T. Trinh, L.A.B. Quynh, N.H. Hieu, ?Synthesis of zinc oxide/graphene oxide nanocomposite material for antibacterial application,? International Journal of Nanotechnology,Vol.15, pp.108?117, 2018.doi: 10.1504/IJNT.2018.089542
[82] P. Gao, J. Liu, D.D. Sun, W. Ng, ?Graphene oxide?CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation,? Journal of Hazardous Materials, Vol.250-251, pp.412?420, 2013.doi: https://doi.org/10.1016/j.jhazmat.2013.02.003
[83] Z. Yang, X. Hao, S. Chen, Z. Ma, W. Wang, C. Wang, L. Yue, H. Sun, Q. Shao, V. Murugadoss, ?Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles,? Journal of Colloidal Interface Science,Vol.533, pp.13?23, 2018.doi:10.1016/j.jcis.2018.08.053
[84] C. H. Deng, J.L. Gong, G.M. Zeng, C.G. Niu, Q.Y. Niu, W. Zhang, H.Y. Liu, ?Inactivation performance and mechanism of Escherichia coli in aqueous system exposed to iron oxide loaded graphene nanocomposites,? Journal of Hazardous Materials, Vol.276, pp.66?76, 2014.doi: https://doi.org/10.1016/j.jhazmat.2014.05.011
[85] C. Santhosh, P. Kollu, S. Doshi, M. Sharma, D. Bahadur, M.T. Vanchinathan, P. Saravanan, B.S. Kim, A.N, Grace, ?Adsorption, photodegradation and antibacterial study of graphene?Fe3O4 nanocomposite for multipurpose water purification application,? RSC Advances, Vol.4, pp.28300?28308, 2014.doi: https://doi.org/10.1039/C4RA02913E
[86] S. Chella, P. Kollu, E.V.P. Komarala, S. Doshi, M. Saranya, S. Felix, R. Ramachandran, P. Saravanan, V.L. Koneru, V. Venugopal, ?Solvothermal synthesis of MnFe2O4-graphene composite?Investigation of its adsorption and antimicrobial properties,? Applied Surface Science, Vol.327,pp.27?36, 2015.doi:https://doi.org/10.1016/j.apsusc.2014.11.096
[87] C. Chen, S. Cao, W. Yu, X. Xie, Q. Liu, Y. Tsang, Y. Xiao, ?Adsorption, photocatalytic and sunlight-driven antibacterial activity of Bi2WO6/graphene oxide nanoflakes,? Vacuum, Vol.116, pp.48?53, 2015.doi: https://doi.org/10.1016/j.vacuum.2015.02.031
[88] J. Shen, T. Li, M. Shi, B. Yan,N. Li, M. Ye, ?One-pot hydrothermal synthesis of Ag-reduced graphene oxide composite with ionic liquid,? Journals of Materials & chemistry, Issue.21, pp.7795?7801, 2011. doi: https://doi.org/10.1039/C1JM10671F
[89] N. Wang, B. Hu, M.L. Chen, J.H. Wang, ?Polyethylenimine mediated silver nanoparticle-decorated magnetic graphene as a promising photothermal antibacterial agent,? Nanotechnology Vol.26, Issue.19, 2015.doi: https://doi.org/10.1088/0957-4484/26/19/195703
[90] S. Ma, S. Zhan, Y. Jia, Q. Zhou, ?Highly efficient antibacterial and Pb (II) removal effects of Ag-CoFe2O4-GO nanocomposite,? ACS Applied Material & Interfaces, Vol.7, Issue.19, pp.10576?10586, 2015.doi: https://doi.org/10.1021/acsami.5b02209
[91] L. Rizzello, P.P. Pompa, ?Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines,? Chemical Society Reviews, Vol.43, Issue.5pp.1501?1518, 2014.doi: https://doi.org/10.1039/C3CS60218D
[92] Z. Tai, H. Ma, B. Liu, X. Yan, Q. Xue, ?Facile synthesis of Ag/GNS-g-PAA nanohybrids for antimicrobial applications,? Colloids Surfaces B Biointerfaces, Vol.89, pp.147?151, 2012.doi: 10.1016/j.colsurfb.2011.09.006
[93] H. Zhou, Y. Liu, W. Chi, C. Yu, Y. Yu, ?Preparation and antibacterial properties of Ag@ polydopamine/graphene oxide sheet nanocomposite,? Applied Surface Science, Vol.282, pp.181?185, 2013.doi: 10.1016/j.apsusc.2013.05.099
[94] T. Saito, M. Ogawa, Y. Hata, ?Acceleration effect of human recombinant bone morphogenetic protein-2 on differentiation of human pulp cells into odontoblasts,? Journal of Endodontics, Vol.30 Issue. 4, pp.205 ? 208, 2004.doi:https://doi.org/10.1097/00004770-200404000-00005
[95] W. Qin, F. Yang, R. Deng, D. Li, Z. Shong, et.al., ?Smad 1/5 is involved in bone morphogenetic protein-2-induced odontoblastic differentiation in human dental pulp cells,? Journal of Endoontics, Vol.38, Issue. 1, pp.66 ? 71, 2012.doi: 10.1016/j.joen.2011.09.025
[96] J. Li,X. Huang, X. Xu,?SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis,? Development (Cambridge, England), Vol.138, Issue.10, pp.1977 ? 1989, 2011.doi:10.1242/dev.061341
[97] W. Qin,P. Liu, R. Zhang, ?Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway,? International Journal of Oral Science, Vol.7,pp.95-102, 2015.doi:https://doi.org/10.1038/ijos.2015.7
[98] M. Nakashima, ?Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy,? Cytokine Growth Factor Rev, Vol.16, Issue.3, pp.369 ? 376, 2005.
[99] D. Chen, M. Zhao, G.R. Mundy, ?Bone morphogenetic proteins,? Growth Factors (Chur, Switzerland), Vol.22, Issue. 4, pp.233 ? 241, 2004.doi:10.1080/08977190412331279890
[100] M. Nakashima, A.H. Reddi, ?The application of bone morphogenetic proteins to dental tissue engineering,? Nature Biotechnology, Vol.21, Issue. 9, pp.1025 ? 1032, 2003.doi:10.1038/nbt864
[101] O.P. Gautschi, S.P. Frey, R. Zellweger, ?Bone morphogenetic proteins in clinical applications,? ANZ Journal of Surgery, Vol.77, Issue.8, pp.626 ? 631, 2007.doi:10.1111/j.1445-2197.2007.04175.x
[102] W.G. La, S. Park, H.H. Yoon, G.J. Jeong, T.J. Lee, S.H. Bhang, J.Y. Han, K. Char, B.S. Kim, ?Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide,? Small, Vol.9, Issue.23, pp.4051?4060, 2013.doi: 10.1002/smll.201300571
[103] N. Dubey, S.S. Rajan, Y.D. Bello, K.S. Min, V. Rosa, ?Graphene nanosheets to improve physico-mechanical properties of bioactive calcium silicate cements,? Materials, Vol.10, Issue.6, pp.606, 2017.doi: http://dx.doi.org/10.3390/ma10060606.
[104] W.G. La, M. Jin, S. Park, H.H. Yoon, G.J. Jeong, S.H. Bhang, H. Park, K. Char, B.S. Kim, ?Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration,? International Journal of Nanomedicine, Vol.9, pp.107-116, 2014.doi: 10.2147/IJN.S50742
[105] J. Jin, L. Zhang, M. Shi, Y. Zhang, Q. Wang, ?Ti-GO-Ag nanocomposite: the effect of content level on the antimicrobial activity and cytotoxicity,? International Journal of Nanomedicine,Vol.12, pp.4209-4224, 2017.doi: 10.2147/IJN.S134843
[106] W. Qian, J. Qiu, J. Su, X. Liu, ?Minocycline hydrochloride loaded on titanium by graphene oxide: an excellent antibacterial platform with the synergistic effect of contact-killing and release-killing,? Biomaterial Science,Vol.6, Issue. 2, pp.304-313, 2018. doi:10.1039/C7BM00931C
[107] J.W.V.V. Dijken, U. Pallesen, ?Posterior bulk-filled resin composite restorations: A 5-year randomized controlled clinical study,? Journal of dentistry, Vol.51, pp.29-35, 2016.doi: https://doi.org/10.1016/j.dental.2016.05.008
[108] Diana Olteanu , Adriana Filip , CrinaSocaci , Alexandru Radu Biris , Xenia Filip , Maria Coros , Marcela Corina Rosu , Florina Pogacean , Camelia Alb , IoanaBaldea , Pompei Bolfa , Stela Pruneanu?Cytotoxicity Assessment of Graphene-Based Nanomaterials on Human Dental Follicle Stem Cells,? Nanomaterials (Basel, Switzerland),Vol.8, Issue.5,pp.136:791, 2015.
https://doi.org/10.1016/j.colsurfb.2015.10.023)
[109] H.B. Dias, M.I.B. Bernardi, V.S. Marangoni, ?Synthesis,characterization and application of Ag doped ZnO nanoparticles inacompositeresin,? Material Science & Engineering C, Vol.96, pp.391-401, 2019. doi: https://doi.org/10.1016/j.msec.2016.09.070).
[110] M. Ramadas, G. Bharath, N. Ponpandian, A.M. Ballamurugan, ?Investigation on biophysical properties of hydroxyapatite/graphene oxide (HAp/GO) based binary nanocomposite for biomedical applications,? Material Chemistry and Physics, Vol.199, pp.179?184, 2017.doi: http://dx.doi.org/10.1016/j.matchemphys.2017.07.001
[111] N. Pachauri, K. Dave, A. Dinda, P.R. Solanki, ?Cubic CeO2 planted reduced graphene oxide based highly sensitive biosensor for noninvasive oral cancer biomarker,? Journals of Materials Chemistry B. Vol.4, Issue.1, pp.1-178, 2016. doi:https://doi.org/10.1039/C8TB00653A
[112] M. Fiorillo, A.F. Verre, M. Iliut, M. Peiris-Pag?s, B. Ozsvari, R. Gandara, A.R. Cappello, F. Sotgia, A. Vijayaraghavan, M.P. Lisanti, ?Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via ?differentiation-based nano-therapy,? Oncotarget, Vol.28, Issue.6, pp.3553?3562, 2015. doi: 10.18632/oncotarget.3348 (your doi is wrong )
[113] S. Kumar, J.G. Sharma, S. Maji, B.D. Malhotra, ?Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection,? Biosensors and Bioelectronics, Vol.78, pp.497?504, 2016.doi : http://dx.doi.org/10.1016/j.bios.2015.11.084.
[114] J.H. Lee, A. Sahu, C. Jang, G. Tae, ?The effect of ligand density on in vivo tumor targeting of nanographene oxide,? Journal of Controlled Release, Vol.209, pp.219?228, 2015. http://dx.doi.org/10.1016/j.jconrel.2015.04.035.
[115] W. Zheng, X. Yin, Y. Cai, W. Xu, C. Song, Y. Wang, J. Zhang, A. Kang, Z. Wang, W. Han, ?Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma,? International Journal of Nanomedicine, Vol.13, pp.1505?1524, 2018. doi: http://dx.doi.org/10.2147/IJN.S156984.
[116] L. Hou, Y. Shi, G. Jiang, W. Liu, H. Han, Q. Feng, J. Ren, Y. Yuan, Y. Wang, J. Shi, Z. Zhang, ?Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery,? Nanotechnology, Vol.27, Issue.31, 2016. doi: http://dx.doi.org/10.1088/0957-4484/27/31/315105.
[117] S. Nahorny, H. Zanin, V.A. Christino, et.al., ?Multi-walled carbon nanotubes/grapheneoxide hybrid and nanohydroxyapatite composite: a novel coating to prevent dentin erosion,? Material Science and Engineering C, Vol.79, pp.199-208, 2017. doi:https://doi.org/10.1016/j.msec.2017.05.022
[118] S.K. Ponnanah, P. Periarakuppan, B. Vellachamy, ?A new analytical device incorporating a nitrogen doped lanthanum metal oxide with reduced graphene oxide sheets for paracetamol sensing,? UltrsonicsSonohemistry, Vol.44, pp.106-303, 2018. doi: https://doi.org/10.1016/j.ultsonch.2018.02.016
[119] I.H. Su, C.F. Lee, Y.P. Su, L.H. Wang, ?Evaluatinga Cobalt-Tetraphenylporphyrin Complex, Functionalized with a Reduced Graphene Oxide Nanocomposite, Journal of Esthetic and Restorative Dentistry, Vol.28. Issue.5, pp.321-329, 2016. doi:10.1111/jerd.12240
[120] A. Cucchi, P. Ghensi, ?Vertical guided bone regeneration using titanium-reinforced d-PTFE membrane and prehydratedcorticocancellous bone graft,? The Open Dentistry Journal, Vol.8, pp.194?200, 2014. doi: 10.2174/1874210601408010194
[121] T.V. Scantlebury, ?1982-1992: a decade of technology development for guided tissue regeneration, Journal of Periodontology,? Vol.64, pp.1129?1137, 1993.
doi: https://doi.org/10.1902/jop.1993.64.11s.1129
[122] P. De Marco, et al., ?Graphene oxide improves the biocompatibility of collagen membranes in an in vitro model of human primary gingival fibroblasts,? Biomedical Materials, Vol.12, Issue,5, pp.55005, 2017. doi: 10.1088/1748-605X/aa7907
[123] M. Radunovic, et al., ?Graphene oxide enrichment of collagen membranes improves DPSCs differentiation and controls inflammation occurrence,? Journal of Biomedicals Research, Vol.105, Issue.8. pp.2312?2320, 2017.doi:
[124] J. He, et al., ?The inhibition effect of graphene oxide nanosheets on the development of Streptococcus mutansbiofilms,? Particle and particle system Characterization, Vol.34, Issue.5, pp.1700001, 2017.doi: https://doi.org/10.1002/ppsc.201700001
[125] R. Zita Gomes, et al., ?Implant stability in the posterior maxilla: a controlled clinical trial,? Vol.2017, 2017.doi: https://doi.org/10.1155/2017/6825213
[126] N. Ren, et al., ?Growth and accelerated differentiation of mesenchymal stem cells on graphene-oxide-coated titanate with dexamethasone on surface of titanium implants,? Dental materials : official publication of the Academy of Dental Materials, Vol.33, Issue.5, pp.525?535, 2017. doi:10.1016/j.dental.2017.03.001
[127] R. Guazzo, et al., ?Graphene-based nanomaterials for tissue engineering in the dental field,? Nanomaterials, Vol.8, Issue.5, pp.349, 2018. doi: 10.3390/nano8050349
[128] C. Park, et al., ?Graphene as an enabling strategy for dental implant and tissue regeneration, Tissue Engineering and Regenerative Medicine,? Vol.14, Issue.5, pp. 481?493, 2017. doi: 10.1007/s13770-017-0052-3
[129] H.S. Jung, et al, ?Surface modification of multipass caliber-rolled Ti alloy with dexamethasone-loaded graphene for dental applications,? Applied materials & Interfaces, Vol.7, Issue.18, pp.9598?9607, 2015.doi: https://doi.org/10.1021/acsami.5b03431
[130] W. Qian, et al., ?Minocycline hydrochloride loaded on titanium by graphene oxide: an excellent antibacterial platform with the synergistic effect of contact-killing and release-killing,? Biomaterials science, Vol.6 Issue.2, pp.304?313, 2018. doi:10.1039/c7bm00931c
[131] J. Jin, et al., ?Ti-GO-Ag nanocomposite: the effect of content level on the anti-microbial activity and cytotoxicity,? Internantional Journal of Nanomedicne, Vol.12, pp.4209, 2017.doi: 10.2147/IJN.S134843
[132] Q. Zhou, et al., ?Bioactivity of periodontal ligament stem cells on sodium titanate coated with graphene oxide,? Scientific Reports, Vol.6, pp.19343, 2016. doi: 10.1038/srep19343
[133] N. Dubey, S.S. Rajan, Y.D. Bello, K.S. Min, V. Rosa, ?Graphene nanosheets to improve physico-mechanical properties of bioactive calcium silicate cements,? Materials, Vol.10, Issue.6, pp.606, 2017. doi :http://dx.doi.org/10.3390/ma10060606.
[134] A. Rajesh, G. Mangamma, T.N. Sairam, S. Subramanian, S. Kalavathi, M. Kamruddin, S. Dash, ?Physicochemical properties of nanocomposite: hydroxyapatite in reduced graphene oxide,? Materials Science & Engineering C, Vol.76, pp.203?210, 2017. doi; http://dx.doi.org/10.1016/j.msec.2017.02.044.
[135] Lobo, A., Rodrigues, B., Leite, N., Cavalcante, B., da Silva, N., Marciano, F., Webster, T., ?Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation,?International Journal of Nanomedicine, Vol.2569, 2016. doi:10.2147/ijn. s106339
[136] M. Gong, Q. Zhao, L. Dai, Y. Li, T. Jiang, ?Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties,? Journal of Asian Ceramic Societies, Vol.5, Issue.2, pp.160?168, 2017.doi: http://dx.doi.org/10.1016/j.jascer.2017.04.001.
[137] M. Mehrali, A.R. Akhiani, S. Talebian, M. Mehrali, S.T. Latibari, A. Dolatshahi-Pirouz, H.S.C. Metselaar, ?Electrophoretic deposition of calcium silicate?reduced graphene oxide composites on titanium substrate,? Journal of European Ceramic Societies, Vol.36, Issue. 2, pp.319?332, 2016.doi: http://dx.doi.org/10.1016/j.jeurceramsoc.2015.08.025
[138] Y.C. Shin, J.H. Lee, O.S. Jin, S.H. Kang, S.W. Hong, B. Kim, J.-C. Park, D.-W. Han, ?Synergistic effects of reduced graphene oxide and hydroxyapatite on osteogenic differentiation of MC3T3-E1 preosteoblasts,? Carbon, Vol.95, pp.1051?1060, 2015. doi: http://dx.doi.org/10.1016/j.carbon.2015.09.028.
[139] G.M. Neelgund, A. Oki, Z. Luo, ?In-situ deposition of hydroxyapatite on graphene nanosheets,? Materials Research Bulletin, Vol.48, Issue.2, pp.175?179, 2013. doi: http://dx.doi.org/10.1016/j.materresbull.2012.08.077
[140] M. ?osiˇ c, ́ S. Erakovic, ́ A. Jankovic, ́ M. Vukasinovi ˇ, c-Sekuli ́ c, ́ I.Z. Matic, ́ J.Stojanovic, ́ K.Y. Rhee, V. Miskovi ˇ c-Stankovi ́ c, ́ S.-J. Park, ?In vitro investigation of electrophoretically deposited bioactive hydroxyapatite/chitosan coatings reinforced by graphene,? Journal of Industrial Engineering Chemistry, Vol.47, pp.336?347, 2017. doi: http://dx.doi. org/10.1016/j.jiec.2016.12.004.
[141] P. Pulyala, A. Singh, M.F. Dias-Netipanyj, S.C. Cogo, L.S. Santos, P. Soares, V. Gopal, V. Suganthan, G. Manivasagam, K.C. Popat, ?In-vitro cell adhesion and proliferation of adipose derived stem cell on hydroxyapatite composite surfaces,? Materials Science and. Engineering C., Vol.75, pp.1305?1316, 2017.doi: http://dx. doi.org/10.1016/j.msec.2017.02.175.
[142] L. Fathyunes, J. Khalil-Allafi, ?Characterization and corrosion behavior of graphene oxide-hydroxyapatite composite coating applied by ultrasound-assisted pulse electrodeposition,? Ceramics Internantional, Vol.43, Issue.16, pp.13885?13894, 2017. doi: http://dx.doi.org/10.1016/j.ceramint.2017.07.113.
[143] L. Zhang, Y. Duan, Z. Gao, J. Ma, R. Liu, S. Liu, Z. Tu, Y. Liu, C. Bai, L. Cui, F. Yang, J. Liu, J. Kong, Y. Li, ?Graphene enhanced anti-corrosion and biocompatibility of NiTi alloy,? NanoImpact, Vol.7, pp.7?14, 2017. doi; http://dx.doi.org/10.1016/j.impact. 2016.10.003.
[144] A.R. Rafieerad, A.R. Bushroa, B. Nasiri-Tabrizi, J. Vadivelu, F. Yusof, S. Baradaran, ?Graphene oxide modified anodic ternary nanobioceramics on Ti6Al7Nb alloy for orthopedic and dental applications,? Procedia Engineering, Vol.184, pp.409?417, 2017. doi; http://dx.doi.org/10.1016/j.proeng.2017.04.111.Citation
Shaloo, Vaishali, Sakshi, Siddhartha Dan, "Graphene and Its Composites Used In Research of Dental and Oral Infection," International Journal of Scientific Research in Chemical Sciences, Vol.7, Issue.3, pp.20-34, 2020
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.