Full Paper View Go Back

Synthesis of Hierarchical Mesoporous KAlPO for Benzene Hydroxylation

Sreenivasulu Peta1 , SiddharthVats 2 , Namrata Budhiraja3

Section:Research Paper, Product Type: Journal-Paper
Vol.9 , Issue.2 , pp.14-19, Apr-2022


Online published on Apr 30, 2022


Copyright © Sreenivasulu Peta, SiddharthVats, Namrata Budhiraja . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Sreenivasulu Peta, SiddharthVats, Namrata Budhiraja, “Synthesis of Hierarchical Mesoporous KAlPO for Benzene Hydroxylation,” International Journal of Scientific Research in Chemical Sciences, Vol.9, Issue.2, pp.14-19, 2022.

MLA Style Citation: Sreenivasulu Peta, SiddharthVats, Namrata Budhiraja "Synthesis of Hierarchical Mesoporous KAlPO for Benzene Hydroxylation." International Journal of Scientific Research in Chemical Sciences 9.2 (2022): 14-19.

APA Style Citation: Sreenivasulu Peta, SiddharthVats, Namrata Budhiraja, (2022). Synthesis of Hierarchical Mesoporous KAlPO for Benzene Hydroxylation. International Journal of Scientific Research in Chemical Sciences, 9(2), 14-19.

BibTex Style Citation:
@article{Peta_2022,
author = {Sreenivasulu Peta, SiddharthVats, Namrata Budhiraja},
title = {Synthesis of Hierarchical Mesoporous KAlPO for Benzene Hydroxylation},
journal = {International Journal of Scientific Research in Chemical Sciences},
issue_date = {4 2022},
volume = {9},
Issue = {2},
month = {4},
year = {2022},
issn = {2347-2693},
pages = {14-19},
url = {https://www.isroset.org/journal/IJSRCS/full_paper_view.php?paper_id=2783},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRCS/full_paper_view.php?paper_id=2783
TI - Synthesis of Hierarchical Mesoporous KAlPO for Benzene Hydroxylation
T2 - International Journal of Scientific Research in Chemical Sciences
AU - Sreenivasulu Peta, SiddharthVats, Namrata Budhiraja
PY - 2022
DA - 2022/04/30
PB - IJCSE, Indore, INDIA
SP - 14-19
IS - 2
VL - 9
SN - 2347-2693
ER -

184 Views    235 Downloads    65 Downloads
  
  

Abstract :
An amorphous hierarchical mesoporous KAlPO material was synthesized by a simple method. This compound showed catalytic activity for benzene (48% conversion) to phenol (100% selectivity) reaction.

Key-Words / Index Term :
Catalysis, Mesoporous, Hydroxylation and Phenol

References :
[1]. a) A. Vinu, V. Murugesan, M. Hartmann, “pore size engineering and mechanical stability of the cubic mesoporous molecular sieve SBA-1,” Chemistry of Materials, Vol.15, issue. 6 pp.1385, 2003, 1385-1393; b) S. Huo, J. Feng, F. Schuth, G. D. Stucky, “Preparation of Hard Mesoporous Silica Spheres.” Chemistry of Materials, Vol.9, Issue 1, pp.14, 1997.
[2]. a) Y. Wan, D. Zhao, “On the Controllable Soft-Templating Approach to Mesoporous Silicates,” Chemical. Reviews, Vol. 107, Issue. 7, pp.2821-2860, 2007; b) R. Mokaya, “Ultrastable Mesoporous Aluminosilicates by Grafting Routes” Angewandtle. International Edition Chemie, Vol. 38, Issue.19, pp.2930-2934, 1999.
[3]. a) X. Yang, A. Leonard, A. Lemaire, G. Tian, B. Su, “Self-formation phenomenon to hierarchically structured porous materials: design, synthesis, formation mechanism and applications” chemical communications Vol. 47, Issue. 10, pp. 2763-2768, 2011; b) P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature, Vol. 396, Issue.6707,pp.152-155, 1998.
[4]. a)T. Kimura, “Surfactant-templated mesoporous aluminophosphate-based materials and the recent progress,”Microporous Mesoporous Materials,Vol.77, Issue.2-3, pp.97-107. 2005;
[5]. b)M. Tiemann, M. Froba, “ mesostructured aluminophosphates synthesized with` supramolecular structure directors” Chemistry of Materials, Vol. 13, Issue. 10, pp.3211-3217, 2001;
[6]. c) P. Feng, Y. Xia, J. Feng, X. Bu, G. D. Stucky, “Synthesis and characterization of mesostructured aluminophosphates using the fluoride route,” Chemical Communications, Issue. 10, 949-950, 1997.
[7]. a) M. Tiemann, M. Schulz, C. Jäger, M. Fr?ba, “Mesoporous Aluminophosphate Molecular Sieves Synthesized under Nonaqueous Conditions” Chemistry of Materials, Vol.13, Issue.9, pp. 2885-2891, 2001; b) R.Tian, W. Tong, Y. Wang, G. Duan, V. Krishnan, L. Suib, “Manganese Oxide Mesoporous Structures: Mixed-Valent Semiconducting Catalysts,” Science, Vol. 276, Issue. 5314, pp. 926-930, 1997.
[8]. J. Lu, K. T. Ranjit, P. Rungrojchaipan, L. Kevan, “Synthesis of Mesoporous Aluminophosphate (AlPO) and Investigation of Zirconium Incorporation into Mesoporous AlPOs,” Journal of . Physical Chemistry B, Vol.109, Issue.19, pp. 9284-9293, 2005.
[9]. a) P. Selvam, S. K. Mohapatra, Thermally stable trivalent iron-substituted hexagonal mesoporous aluminophosphate (FeHMA) molecular sieves: Synthesis, characterization, and catalytic properties, Journal of Cataysis, Vol. 238, Issue. 1, pp.88-99, 2006; b) T. Kimura, “Synthesis of Mesostructured and Mesoporous Aluminum Organophosphonates Prepared by Using Diphosphonic Acids with Alkylene Groups” Chemistry of Materials ,Vol. 17, Issue. 2, pp.337-344, 2005.
[10]. F. M. Bautista, J. M. Campelo, A. Garcia, G. D. Luan, J. M. Marinas, R. A. Quiros, A. A. Romero, “Influence of acid–base properties of catalysts in the gas-phase dehydration–dehydrogenation of cyclohexanol on amorphous AlPO4 and several inorganic solids,” Applied Catalysis A: General Vol. 243, Issue. 1, pp.93-107, 2003.
[11]. a) X. Zhao, G. Lu, “Aluminophosphate-based mesoporous molecular sieves: synthesis and characterization of TAPOs,” Microporous Mesoporous Materials, Vol. 44-45, pp. 185-194, 2001;
[12]. b) T. Kimura, Y. Sugahara, K. Kuroda, “Alkyltrimethylammonium Cations as Structure-Directing Agents” Chemistry of Materials, Vol.11, Issue. 2, pp. 508-518;
[13]. c) A. Sayari, V. R. Karra, J. S. Reddy, I. L. Moudrakovski, “Synthesis of mesostructured lamellar aluminophosphates,” Chemical Communication, Issue.3, pp.411-412, 1996.
[14]. a) Z. Yuan, T. Chen, J. Wang, H. Li, Mater.Chem. Phys. 2001, 68, 110;
[15]. b) L. Wang, B. Tian, J. Fan, X. Liu, H. Yang, C. Yu, B.Tu, D. Zhao, “Enhanced photocatalytic decomposition of nonylphenol polyethoxylate by alkyl-grafted TiO2-MCM-41 organic–inorganic nanostructure,” Microporous Mesoporous Material, Vol.67,Issue.1-3, pp.1273-130. 2004.
[16]. a) S. Cabrera, J. E. Haskouri, C. Guillem, A. B. Porter, D. B. Porter, S. Mendioroz, M. D. Marcos, P. Amoros, “Tuning the pore size from micro- to meso-porous in thermally stable aluminophosphates” Chemical Communication, Issue.4, pp.333-334, 1999;
[17]. b) M. Tiemann, M. Froba, “Mesoporous aluminophosphates from a single-source precursor” Chemical Communication, Issue.5, pp.406-407,2002.
[18]. J. M. Campelo,M. Jaraba, D. Luna, R. Luque, J. M. Marinas, A. Romero, J. A. Navio, M. Macias, “Effect of Phosphate Precursor and Organic Additives on the Structural and Catalytic Properties of Amorphous Mesoporous AlPO4 Materials.” Chemistry of Materials, Vol.15, Issue.17, pp. 3352-3364, 2003.
[19]. B. Tian, X. Liu, B. Tu, C. Yu, J. Fan, L. Wang, S. Xie, G. D. Stucky, D. Zhao, “Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs,” Nature Materials, Vol.2, pp. 159-163, 2003.
[20]. a) G. Liu, M. Jia, Z. Zhou, W. Zhang, T. Wu, D. Jiang, “Synthesis of amorphous mesoporous aluminophosphate materials with high thermal stability using a citric acid route,” Chemical Communication, Issue.14,pp.1660-1661, 2004;
[21]. b) F. S. Xiao, L. F. Wang , C. Y. Yin, K. Lin, Y. Di, J. L. Prof, R. X. Prof, D. S. Su Dr, R. S. Prof, T. Y. Dr, T. T. Prof, Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationic Polymers, Angewandtle. International Edition Chemie, Vol.45, Issue.19, pp. 3090-3093, 2006;
[22]. c) T. D. Tang, C. Y. Yin, L. F. Wang, Y. Ji F.-S. Xiao, “Good sulfur tolerance of a mesoporous Beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics,”Journal of Catalysis, Vol. 257, Issue.1, pp.125-133, 2008.
[23]. M. Choi, R. Srivastava , R. Ryoo, “Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks,” Chemical Communications, Issue. 43, pp.4380-4382,2006
[24]. A. Conde, M. M. D1`az-Requejo, P. J. Pe`rez, “Direct, copper-catalyzed oxidation of aromatic C–H bonds with hydrogen peroxide under acid-free conditions,” Chemical Communications, Vol. 47, Issue. 28, pp.8154-8156, 2011.
[25]. B. Cornil, W. A. Herrmann, “Concepts in homogeneous catalysis: the industrial view,” Journal of Catalysis, Vol. 216, Issue.1-2, pp.23-31, 2003.
[26]. a) N. R. Shiju, S. Fiddy, O. Sonntag, M. Stockenhuber, G. Sanker, “Selective oxidation of benzene to phenol over FeAlPO catalysts using nitrous oxide as oxidant,” Chemical Communications, Issue.47, pp.4955-4957, 2006;
[27]. b) A. J. J. Koekkoek, H. Xin, Q. Yang, C. Li, E. J. M. Hensen, “Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol,”Microporous Mesoporous Materials, Vol.145,Issue.1-3, pp. 172-181, 2011
[28]. a) J. Chen, J. Li, Y. Zhang, S. Gao, “Transition metal substituted polyoxometalates and their application in the direct hydroxylation of benzene to phenol with hydrogen peroxide,” Res. Chem. Intermed. Vol. 36, Issue.8, pp.959-968, 2010;
[29]. b) J. Chen, S. Gaoa, J. Xu, Direct hydroxylation of benzene to phenol over a new vanadium-substituted phosphomolybdate as a solid catalyst,Catalysis Communications, Vol. 9, Isuse. 5, pp.728-733, 2008;
[30]. c)Y. Li, Z. Wang, R. Chen, Y. Wang, W. Xing, J. Wang and J. Huang, The hydroxylation of benzene to phenol over heteropolyacid encapsulated in silica, Catal. Commun., Vol. 55, pp. 34-37, 2014;
[31]. d) Y. Leng, J. Wang, D. Zhu, L. Shen, P. Zhao and M. Zhang, Chem. Eng. J., 2011, 173, 620–626; d) Y. Li, S. Li and Y.Kong, “Hydroxylation of benzene to phenol over heteropoly acid H5PMo10V2O40 supported on amine-functionalized MCM-41” RSC Advances., Vol. 11, Issue. 43 pp.26571-26780, 2021;
[32]. e)G. C. Silva, N.M.F. Carvalho, A. Horn, E.R. Lachter, O.A.C. Antunes, “Oxidation of aromatic compounds by hydrogen peroxide catalyzed by mononuclear iron(III) complexes,” Journal of Molecular Catalysis A: Chemical, Vol. 426, pp.564–571, 2017;
[33]. f) R. Mistri, M. Rahaman, J. Llorca, K.R. Priolkar, S. Colussi, B.C. Ray, A. Gayen, “Liquid phase selective oxidation of benzene over nanostructured CuxCe1?xO2?? (0.03 ? x ? 0.15),” Journal of Molecular Catalysis A: Chemical, Vol. 390, pp.187–197, 2014.
[34]. R. Bal, M. Tada, T. Sasaki and Y. Iwasawa, “Direct Phenol Synthesis by Selective Oxidation of Benzene with Molecular Oxygen on an Interstitial-N/Re Cluster/Zeolite Catalyst,” Angewandtle. International Edition Chemie . Vol. 45, Issue.3, pp.448-452, 2006.
[35]. M. Tani, T. Sakamoto, S. Mita, S. Sakaguchi, Y. Ishii, “Hydroxylation of Benzene to Phenol under Air and Carbon Monoxide Catalyzed by Molybdovanadophosphoric Acid.” Angewandtle. International Edition Chemie, Vol. 44, Issue.17, 2586-2588, 2005.
[36]. a) Y. Liu, K. Murata , M. Inaba, Direct oxidation of benzene to phenol by molecular oxygen over catalytic systems containing Pd(OAc)2 and heteropolyacid immobilized on HMS or PIM, Journal of Molecular Catalysis A: Chemical, Vol. 256, Issue. 1-2, pp-247-255, 2006;
[37]. b) T. D. Bui, A. Kimura, S. Ikeda, M. Matsumura, Determination of Oxygen Sources for Oxidation of Benzene on TiO2 Photocatalysts in Aqueous Solutions Containing Molecular Oxygen, Journal of the American Chemical Society, Vol. 132, Issue. 24, pp. 8453-8458, 2010.
[38]. W. Laufer, W. F. Hoelderich, “New direct hydroxylation of benzene with ox`ygen in the presence of hydrogen over bifunctional ion-exchange resins,” Chemical Communication, Issue.16, pp. 1684-1685, 2002.
[39]. a) E. J. M. Hensen, Q. Zhu, R. A. Van santen, “Extraframework Fe Al O species occluded in MFI zeolite as the active species in the oxidation of benzene to phenol with nitrous oxide”,Journal of catalysis, Vol.220, Issue. 2, pp.260-264, 2003;
[40]. b) R. Dittmeyer, L. Bortolotto, Modification of the catalytic properties of a Pd membrane catalyst for direct hydroxylation of benzene to phenol in a double-membrane reactor by sputtering of different catalyst systems, Applied Catalysis A: General,Vol.391, Issue.1-2, pp.311-318
[41]. c) Y. Guo, X. Zhang, H. Zou, H. Liu, J. Wang, K. L. Yeung, “Pd–silicalite-1 composite membrane for direct hydroxylation of benzene,” Chemical Communication, Issue.39, pp.5898-5900, 2009;
[42]. d) R. Molinari, T. Poerio and P. Argurio, “Liquid-phase oxidation of benzene to phenol using CuO catalytic polymeric membranes,” Desalination, Vol. 241, Issue.1-3,pp.22-28, 2009.
[43]. Peta Sreenivasulu, Devaki Nandan, Manoj Kumar, Nagabhatla Viswanadham. "Synthesis and catalytic applications of hierarchical mesoporous AlPO4/ZnAlPO4 for direct hydroxylation of benzene to phenol using hydrogen peroxide", Journal of Materials Chemistry A, Vol. 1, pp.3268-3271, 2013
[44]. Z. Niu, S. Kabisatpathy, J. He, L. A. Lee, J. Rong, L. Yang, G. Sikha, B. N. Popov, T. S. Emrick, T. P. Russell, Q. Wang, “Synthesis and characterization of bionanoparticle—Silica composites and mesoporous silica with large pores,” Nano Res. Vol. 2, Issue.6, pp.474-483, 2009.
[45]. X. Qi, J. Li, T. Ji, Y. Wang, L. Feng, Y. Zhu, X. Fan and C. Zhang,” Catalytic benzene hydroxylation over copper-substituted aluminophosphate molecular sieves (CuAPO-11),” Microporous and Mesoporous Material, Vol. 122, Issue.1-3,pp.36-41,2009.
[46]. N. R. Shiju, S. Fiddy, O. Sonntag, M. Stockenhuber and G. Sankar, “Selective oxidation of benzene to phenol over FeAlPO catalysts using nitrous oxide as oxidant,” Chemical Communication,Issue.47, pp. 4955-4957, 2006.
[47]. L. C. Passoni, F. J. Luna, M. Wallau, R. Buffon and U. Schuchardt, “Heterogenization of H6PMo9V3O40 and palladium acetate in VPI-5 and MCM-41 and their use in the catalytic oxidation of benzene to phenol.”Journal of Molecular Catalysis A Chemical. Vol.134, Issue. 1-3, pp.229-235, 1998.
[48]. B. Chou, J. L. Tsai, S. Cheng, “Cu-substituted molecular sieves as liquid phase oxidation catalysts’” Microporous and Mesoporous Materials, Vol.48, Issue.1-3, pp. 309-317, 2001.
[49]. Y. Li, Z. Wang, R. Chen, Y. Wang, W. Xing, J. Wang and J. Huang, “The hydroxylation of benzene to phenol over heteropolyacid encapsulated in silica” Catalysis Communications, Vol.55, pp. 34-37, 2014
[50]. Y. Leng, J. Wang, D. Zhu, L. Shen, P. Zhao and M. Zhang, “Heteropolyanion-based ionic hybrid solid: A green bulk-type catalyst for hydroxylation of benzene with hydrogen peroxide” Chemical Engineering Journal, Vol. 173, Issue. 2, pp-620-626, 2011.
[51]. Y. Li, S. Li and Y.Kong, “Hydroxylation of benzene to phenol over heteropoly acid H5PMo10V2O40 supported on amine-functionalized MCM-41” RSC Advances, Vol.11, Issue.43, pp.26571-26780, 2021.
[52]. G.C. Silva, N.M.F. Carvalho, A. Horn, E.R. Lachter, O.A.C. Antunes, Oxidation of aromatic compounds by hydrogen peroxide catalyzed by mononuclear iron(III) complexes , Journal of Molecular Catalysis A: Chemical, Vol.426, pp. 564– 571,2017.
[53]. S. Farahmand, M. Ghiaci, J. S. Razavizadeh, Copper phthalocyanine as an efficient and reusable heterogeneous catalyst for direct hydroxylation of benzene to phenol under mild conditions, Inorganica Chimica Acta, Vol. 484, pp.174-179, 2019.
[54]. P. Xiao , Y. Wang , J. N. Kondo, T. Yokoi, “ Consequences of Fe speciation in MFI zeolites for hydroxylation of benzene to phenol with H2O2”Applied Catalysis A, General, Vol. 579, pp.159-167,2019.
[55]. R. Mistri, M. Rahaman, J. Llorca, K.R. Priolkar, S. Colussi, B.C. Ray, A. Gayen, “Liquid phase selective oxidation of benzene over nanostructured CuxCe1?xO2?? (0.03 ? x ? 0.15)” Journal of Molecular Catalysis A: Chemical, Vol. 390, pp.187-197,2014
[56]. X. Qi, J. Li, T. Ji, Y. Wang, L. Feng, Y. Zhu, X. Fan and C. Zhang, “Catalytic benzene hydroxylation over copper-substituted aluminophosphate molecular sieves (CuAPO-11)” Microporous and Mesoporous Material.,Vol. 122, Issue.1-3, pp.36-41,2009.
[57]. N. R. Shiju, S. Fiddy, O. Sonntag, M. Stockenhuber and G. Sankar, “Selective oxidation of benzene to phenol over FeAlPO catalysts using nitrous oxide as oxidant” Chemical Communications, Issue. 47, pp.4955-4957, 2006.
[58]. L. C. Passoni, F. J. Luna, M. Wallau, R. Buffon and U. Schuchardt, “Heterogenization of H6PMo9V3O40 and palladium acetate in VPI-5 and MCM-41 and their use in the catalytic oxidation of benzene to phenol”Journal of Molecular Catalysis A Chemical, Vol. 134, pp. 229-235, 1998.
[59]. B. Chou, J. L. Tsai, S. Cheng, “Cu-substituted molecular sieves as liquid phase oxidation catalysts” Microporous and Mesoporous Materials. Vol. 48, Issue. 1-3, pp. 309-317, 2001.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation