Full Paper View Go Back

Adsorption equilibrium studies of p-Nitrophenol onto macadamia nutshell waste (non-activated and activated carbon) from aqueous solutions

Lydiah N. Simiyu1 , Esther W. Nthiga2 , Paul Tanui3 , Gerald K. Muthakia4

Section:Research Paper, Product Type: Journal-Paper
Vol.10 , Issue.3 , pp.13-24, Jun-2023


Online published on Jun 30, 2023


Copyright © Lydiah N. Simiyu, Esther W. Nthiga, Paul Tanui, Gerald K. Muthakia . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Lydiah N. Simiyu, Esther W. Nthiga, Paul Tanui, Gerald K. Muthakia, “Adsorption equilibrium studies of p-Nitrophenol onto macadamia nutshell waste (non-activated and activated carbon) from aqueous solutions,” International Journal of Scientific Research in Chemical Sciences, Vol.10, Issue.3, pp.13-24, 2023.

MLA Style Citation: Lydiah N. Simiyu, Esther W. Nthiga, Paul Tanui, Gerald K. Muthakia "Adsorption equilibrium studies of p-Nitrophenol onto macadamia nutshell waste (non-activated and activated carbon) from aqueous solutions." International Journal of Scientific Research in Chemical Sciences 10.3 (2023): 13-24.

APA Style Citation: Lydiah N. Simiyu, Esther W. Nthiga, Paul Tanui, Gerald K. Muthakia, (2023). Adsorption equilibrium studies of p-Nitrophenol onto macadamia nutshell waste (non-activated and activated carbon) from aqueous solutions. International Journal of Scientific Research in Chemical Sciences, 10(3), 13-24.

BibTex Style Citation:
@article{Simiyu_2023,
author = {Lydiah N. Simiyu, Esther W. Nthiga, Paul Tanui, Gerald K. Muthakia},
title = {Adsorption equilibrium studies of p-Nitrophenol onto macadamia nutshell waste (non-activated and activated carbon) from aqueous solutions},
journal = {International Journal of Scientific Research in Chemical Sciences},
issue_date = {6 2023},
volume = {10},
Issue = {3},
month = {6},
year = {2023},
issn = {2347-2693},
pages = {13-24},
url = {https://www.isroset.org/journal/IJSRCS/full_paper_view.php?paper_id=3177},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRCS/full_paper_view.php?paper_id=3177
TI - Adsorption equilibrium studies of p-Nitrophenol onto macadamia nutshell waste (non-activated and activated carbon) from aqueous solutions
T2 - International Journal of Scientific Research in Chemical Sciences
AU - Lydiah N. Simiyu, Esther W. Nthiga, Paul Tanui, Gerald K. Muthakia
PY - 2023
DA - 2023/06/30
PB - IJCSE, Indore, INDIA
SP - 13-24
IS - 3
VL - 10
SN - 2347-2693
ER -

150 Views    226 Downloads    32 Downloads
  
  

Abstract :
Water pollution by organic pollutants has been a source of major concern because they tend to accumulate in the body to toxic levels and yet they are not easily biodegraded. P-Nitrophenol (PNP), has negative effects on humans such as cancer, immune system suppression, and gastrointestinal. Various technologies have undergone changes and developed for its elimination from the wastewater such as chemical sedimentation, distillation, and solvent extraction. However, these methods have limited factors such as operational cost and their non-generable nature. Adsorption has proven to be an economically viable and easy method for elimination of these contaminants from the wastewater. This study has dealt with adsorption equilibrium studies of p-Nitrophenol onto Macadamia nutshell in non-activated and activated form. Macadamia nutshells were subjected to base treatment then characterized The methods of scanning electron microscopy (SEM) and Fourier-transform infrared analysis (FT-IR) were utilized in this study and further investigated on the optimization batch experiments. Initial PNP ions increased with an increase in adsorption capacity between (5 – 60) mg/L, from (0.52-0.77) mg/g and (2.38-3.14) mg/g for the unmodified macadamia nutshell (UMNS) and modified macadamia nutshell (MMNS) respectively. The highest PNP ions eradication was recorded at pH 4 and the sorbent dosage in terms of PNP percentage removal increased from 67.53%, to 87.97% and 87.97% to 94.22 % with an enhancement in the dose of 0.05 g and 0.2 g at fixed PNP concentration for both the UMNS and MMNS. This is designated to a bigger number of active adsorption sites with greater availability for adsorption process in the modified material. Adsorption equilibrium for the UMNS and MMNS was attained after 30 minutes with an optimum dose of 0.1g. The presence of the amides, hydroxyl, asymmetric and antisymmetric vibrations (C-H) and amines functional groups was detected using FTIR which captured change in the chemical functional groups modification. Topography and the shape of the adsorbents was studied by the SEM. From the equilibrium models, the sorption behaviour fitted well with and the Langmuir isotherm. The method became highly efficient for making a productive MMNS alternative to renewable carbon.

Key-Words / Index Term :
macadamia, activated carbon, p-Nitrophenol, adsorption capacity, wastewater

References :
[1] I. B. Obinna and E. C. Ebere, “A review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants,” Anal. Methods Environ. Chem. J., Vol.2, Issue 3, pp.5–38, 2019.
[2] I. K. Erabee and S. M. Ethaib, “Performane of Activated Carbon Adsorption in Removing of Organic Pollutants from River Water,” Int. J. Eng. Technol., Vol. 7, Issue 4.20, pp.356-358, 2018. doi: 10.14419/ijet. v7i4.20.26134.
[3] A. T. Mbaveng, Q. Zhao, and V. Kuete, “20 - Harmful and Protective Effects of Phenolic Compounds from African Medicinal Plants,” in Toxicological Survey of African Medicinal Plants, V. Kuete, Ed., Elsevier, pp.577–609, 2014. doi: 10.1016/B978-0-12-800018-2.00020-0.
[4] N. T. Abdel-Ghani, E. S. A. Rawash, and G. A. El-Chaghaby, “Equilibrium and Kinetic Study for the Adsorption of P-Nitrophenol from Wastewater Using Olive Cake Based Activated Carbon,” Global Journal of Environmental Source and Management, Vol.2, Issue 1, pp.11-18, 2016.
[5] G. Dickie and G. Dickie, “Pollution killing 9 million people a year, Africa hardest hit - study,” Reuters, 2022. https://www.reuters.com/business/environment/pollution-killing-9-million-people-year-africa-hardest-hit-study-2022-05-17/
[6] O. Beulah Otitoju et al., Pollution and Risk Assessment of Phenolic Compounds in Drinking Water Sources in South-Western Nigeria. Research square, pp.1-22, 2022. doi: 10.21203/rs.3.rs-2233618/v1.
[7] E. W. Nthiga, “Efficacy and Kinetics of Adsorption of Single and Multiple Heavy Metal Cations from Aqueous Solutions by Fruit Waste Products. (Doctoral dissertation, Kenyatta University),” p.173, 2016.
[8] R. R. Appannagari, “Environmental Pollution Causes and Consequences: A Study,” North Asian International Research Journal of Social Science and Humanities, Vol.3, Issue 8, pp.151-161, 2017.
[9] S. Altenor, B. Carene, E. Emmanuel, J. Lambert, J.-J. Ehrhardt, and S. Gaspard, “Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation,” J. Hazard. Mater., Vol.165, Issue (1–3), pp.1029–1039, 2009. doi: 10.1016/j.jhazmat.2008.10.133.
[10] A. L. Cazetta et al., “NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption,” Chemical Engineering Journal., Vol.174, Issue 1, pp.117–125, 2011. doi: 10.1016/j.cej.2011.08.058.
[11] M. Montaño, A. C. Gutleb, and A. J. Murk, “Persistent toxic burdens of halogenated phenolic compounds in humans and wildlife,” Environ. Sci. Technol., Vol.47, Issue 12, pp.6071–6081, 2013. doi: 10.1021/es400478k.
[12] J. Dachs and L. Méjanelle, “Organic Pollutants in Coastal Waters, Sediments, and Biota: A Relevant Driver for Ecosystems During the Anthropocene?” Estuaries Coasts, Vol.33, Issue 1, pp.1–14, 2010. doi: 10.1007/s12237-009-9255-8.
[13] R. Pabbati, V. Jhansi, and K. Reddy, “Conventional Wastewater Treatment Processes,” Advances in the Domain of Environmental and Microbial Biotechnology, pp.455–479, 2021. doi: 10.1007/978-981-15-8999-7_17.
[14] S. A. Dos Reis, L. L. da Conceição, N. P. Siqueira, D. D. Rosa, L. L. da Silva, and M. do C. G. Peluzio, “Review of the mechanisms of probiotic actions in the prevention of colorectal cancer,” Nutr. Res. N. Y. N, Vol.37, pp.1–19, 2017, doi: 10.1016/j.nutres.2016.11.009.
[15] A. Fahad, R. M. S. Radin Mohamed, M. Saphira, B. Radhi, and M. Al-Sahari, “Wastewater and its Treatment Techniques: An Ample Review,” Indian J. Sci. Technol., Vol. 12, Issue 25, pp.1-13, 2019, doi: 10.17485/ijst/2019/v12i25/146059.
[16] M. Adebayo and F. Areo, “Removal of phenol and 4-nitrophenol from wastewater using a composite prepared from clay and Cocos nucifera shell: Kinetic, equilibrium and thermodynamic studies,” Resour. Environ. Sustain., Vol. 3, p.100020, 2021. doi: 10.1016/j.resenv.2021.100020.
[17] L. Liu, G. Deng, and X. Shi, “Adsorption characteristics and mechanism of p-nitrophenol by pine sawdust biochar samples produced at different pyrolysis temperatures,” Sci. Rep., Vol. 10, Issue 1, p.5149, 2020, doi: 10.1038/s41598-020-62059-y.
[18] D. R. Popovici, M. Neagu, C. M. Dusescu-Vasile, D. Bombos, S. Mihai, and E.-E. Oprescu, “Adsorption of p-nitrophenol onto activated carbon prepared from fir sawdust: isotherm studies and error analysis,” React. Kinet. Mech. Catal., Vol. 133, Issue 1, pp.483–500, 2021. doi: 10.1007/s11144-021-01997-8.
[19] P. T. Dhorabe, D. H. Lataye, and R. S. Ingole, “Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from Acacia glauca sawdust,” Water Sci. Technol. J. Int. Assoc. Water Pollut. Res., Vol.73, Issue 4, pp.955-966, 2016. doi: 10.2166/wst.2015.575.
[20] E. Santana et al., “Adsorption study of 4-nitrophenol onto kaolinite (001) surface: A van der Waals density functional study,” Mater. Chem. Phys., Vol.271, p.124887, 2021, doi: 10.1016/j.matchemphys.2021.124887.
[21] L. Gitonga, A. Muigai, E. Kahangi, K. Ngamau, and S. Gichuki, “Status of macadamia production in Kenya and the potential of biotechnology in enhancing its genetic improvement,” J Plant Breed Crop Sci, Vol.1, Issue 3, pp.049-059, 2009.
[22] S. El-Hawary, M. Abubaker, and E. Mahrous, “Extracts of Different Organs of Macadamia Nut Tree (Macadamia Integrifolia) Ameliorate Oxidative Damage in D-Galactose Accelerated Aging Model in Rats,” Biointerface Res. Appl. Chem., Vol.12, pp.7125-7135, 2022, doi: 10.33263/BRIAC125.71257135.
[23] O. Oginni, K. Singh, G. Oporto, B. Dawson-Andoh, L. McDonald, and E. Sabolsky, “Influence of one-step and two-step KOH activation on activated carbon characteristics,” Bioresour. Technol. Rep., Vol.7, Issue 1, p. 100-266, 2019. doi: 10.1016/j.biteb.2019.100266.
[24] S. Bertazzo and K. Rezwan, “Control of ?-alumina surface charge with carboxylic acids,” Langmuir, Vol.26, No 5, pp.3364-3371, 2010.
[25] N. R. Bishnoi, M. Bajaj, N. Sharma, and A. Gupta, “Adsorption of Cr(VI) on activated rice husk carbon and activated alumina,” Bioresour. Technol., Vol.91, No 3, pp.305–307, 2004, doi: 10.1016/S0960-8524(03)00204-9.
[26] N. H. Phan, S. Rio, C. Faur, L. Le Coq, P. Le Cloirec, and T. H. Nguyen, “Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications,” Carbon, Vol.44, No 12, pp.2569–2577, 2006, doi: 10.1016/j.carbon.2006.05.048.
[27] I. A. W. Tan and B. H. Hameed, “Adsorption Isotherms, Kinetics, Thermodynamics and Desorption Studies of Basic Dye on Activated Carbon Derived from Oil Palm Empty Fruit Bunch,” J. Appl. Sci., Vol.10, No 21, pp.2565–2571, 2010, doi: 10.3923/jas.2010.2565.2571.
[28] I. K. Erabee et al., “Manufacture of Low-cost Activated Carbon Using Sago Palm Bark and Date Pits by Physiochemical Activation,” Bio Resources, Vol.12, No 1, pp.1916-1923, 2017.
[29] N. H. Phan, S. Rio, C. Faur, L. Le Coq, P. Le Cloirec, and T. H. Nguyen, “Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications,” Carbon, Vol.44, No 12, pp.2569-2577, 2006. doi: 10.1016/j.carbon.2006.05.048.
[30] Z. Heidarinejad, M. H. Dehghani, M. Heidari, G. Javedan, Prof. I. Ali, and M. Sillanpää, “Methods for preparation and activation of activated carbon: a review,” Environ. Chem. Lett., Vol.18, Issue 2, pp.1–23, 2020. doi: 10.1007/s10311-019-00955-0.
[31] E. Saputro, V. Wulan, B. Winata, R. Yogaswara, and N. Erliyanti, “Process of Activated Carbon from Coconut Shells Through Chemical Activation,” Nat. Sci. J. Sci. Technol., Vol.9, Issue 1, pp.23-28, 2020. doi: 10.22487/25411969. 2020.v9. i1.15042.
[32] J. Kaur, “Adsorption Isotherms,” Vol.265, pp.1-37, 2017. doi: 10.13140/RG.2.2.21256.32005.
[33] J. Wang and X. Guo, “Adsorption isotherm models: Classification, physical meaning, application and solving method,” Chemosphere, Vol.258, pp.127-279, 2020. doi: 10.1016/j.chemosphere.2020.127279.
[34] M. Mozaffari Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, and M. Sillanpää, “Adsorption isotherm models: A comprehensive and systematic review (2010?2020),” Sci. Total Environ., Vol.812, pp.151-334, 2021. doi: 10.1016/j.scitotenv.2021.151334.
[35] I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum.,” J. Am. Chem. Soc., Vol.40. No.9, pp.1361–1403, 1918. doi: 10.1021/ja02242a004.
[36] H. Freundlich, “Über die Adsorption in Lösungen,” Z. Für Phys. Chem., Vol.57, No 1, pp.385–470, 1907. doi: 10.1515/zpch-1907-5723.
[37] M. Alaqarbeh, “Adsorption Phenomena: Definition, Mechanisms, and Adsorption Types: Short Review,” Vol.13, pp.43–51, 2021. doi: 10.48419/IMIST.PRSM/rhazes-v13.28283.
[38] S. M. Abegunde, K. S. Idowu, O. M. Adejuwon, and T. Adeyemi-Adejolu, “A review on the influence of chemical modification on the performance of adsorbents,” Resour. Environ. Sustain., Vol.1, Issue 1, pp.1-8, 2020. doi: 10.1016/j.resenv.2020.100001.
[39] E. Abdelnaby, K. Nagaoka, F. M, M. Abdel Daim, H. Samir, and G. Watanabe, “Suppressive effects of long-term exposure to P-nitrophenol on gonadal development, hormonal profile with disruption of tissue integrity, and activation of caspase-3 in male Japanese quail (Coturnix japonica).,” Environ. Sci. Pollut. Res., Vol.22, Issue 14, pp 10930-10942, 2015.
[40] “Agency for Toxic Substances and Disease Registry,” Vol.1, 2023. https://www.atsdr.cdc.gov/index.html
[41] O. US EPA, “Persistent Organic Pollutants: A Global Issue, A Global Response,” Vol.2, 2014. https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response
[42] J. Ndiritu, I. W. Mwangi, J. I. Murungi, and R. N. Wanjau, “Uptake of p-Nitrophenol (PNP) from model aqueous solutions using raw and quaternised Afromomum melegueta peels,” Afr. J. Pure Appl. Sci., Vol.1, No. 1, pp.1-8, 2020. doi: 10.33886/ajpas. v1i1.165.
[43] M. Phele, I. Ejidike, and F. Mtunzi, “Adsorption efficiency of activated macadamia nutshell for the removal Organochlorine pesticides: Endrin and 4,4-DDT from aqueous solution,” J. Pharm. Sci. Res., Vol.11, Issue 1, pp.258–262, 2019.
[44] A. Ahmadpour and D. D. Do, “The preparation of activated carbon from macadamia nutshell by chemical activation,” Carbon, Vol. 35, No 12, pp.1723–1732, 1997. doi: 10.1016/S0008-6223(97)00127-9.
[45] Y. Larionov and Y. Novikov, “Mechanisms of image formation in SEM. SPIE,” In International Conference Macro and Nano-electronics.Vol.8700, pp.274-280, 2013. doi: 10.1117/12.2016850.
[46] E. W. Nthiga, “Efficacy and Kinetics of Adsorption of Single and Multiple Heavy Metal Cations from Aqueous Solutions by Fruit Waste Products (Doctoral dissertation, Kenyatta Univrsity),” p. 173, 2016.
[47] V. Dubois, C. Rodrigues, A. Alves, and L. Madeira, “UV/Vis-Based Persulphate Activation for p-Nitrophenol Degradation,” Catalysts, Vol. 11, Issue 4, p.480, 2021. doi: 10.3390/catal11040480.
[48] M. A. Serunting, R. Rusnadi, D. A. Setyorini, and B. S. Ramadan, “An effective cerium (III) ions removal method using sodium alginate-coated magnetite (Alg-Fe3O4) nanoparticles,” J. Water Supply Res. Technol.-Aqua, Vol.67, No 8, pp.754–765, 2018. doi: 10.2166/aqua.2018.086.
[49] Dr. J. Singh, J. Koduru, Y.-Y. Chang, S.-H. Kang, and J.-K. Yang, “A novel reutilization method for automobile shredder residue as an adsorbent for the removal of methylene blue: Mechanisms and heavy metal recovery using an ultrasonically assisted acid,” Process Saf. Environ. Prot., Vol. 99, pp.88–97, 2015. doi: 10.1016/j.psep.2015.10.011.
[50] H.-K. Chung, W.-H. Kim, J. Park, J. Cho, T.-Y. Jeong, and P.-K. Park, “Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent,” J. Ind. Eng. Chem., Vol.28, pp.241–246, 2015. doi: 10.1016/j.jiec.2015.02.021.
[51] A. Mittal, L. Kurup, and J. Mittal, “Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers,” J. Hazard. Mater., Vol.146, No. (1–2), pp.243-248, 2007. doi: 10.1016/j.jhazmat.2006.12.012.
[52] F. Meng, Q. Huang, S. L. Larson, and F. X. Han, “The Adsorption Characteristics of Uranium(VI) from Aqueous Solution on Leonardite and Leonardite-Derived Humic Acid: A Comparative Study,” Langmuir ACS J. Surf. Colloids, Vol.37, No 43, pp. 12557–12567, 2021, doi: 10.1021/acs.langmuir.1c01838.
[53] C. Du, Y. Xue, Z. Wu, and Z. Wu, “Microwave-assisted one-step preparation of macadamia nut shell-based activated carbon for efficient adsorption of Reactive Blue,” New J. Chem., Vol.41, No. 24, pp.15373–15383, 2017, doi: 10.1039/C7NJ03208K.
[54] J. Ndiritu, I. Mwangi, R. Wanjau, and J. Murungi, “Adsorption studies of p-Nitrophenol from Model aqueous solutions using Raw and Quaternised thorn melon (Cucumis metuliferus) peels,” Asian J. Res. Chem., Vol.14, Issue 1, pp.1–6, 2021. doi: 10.5958/0974-4150.2021.00001.8.
[55] A. Nandiyanto, R. Oktiani, and R. Ragadhita, “How to Read and Interpret FTIR Spectroscope of Organic Material,” Indones. J. Sci. Technol., Vol.4, Issue 1, pp.97–118, 2019, doi: 10.17509/ijost.v4i1.15806.
[56] V. B. Borugadda and V. V. Goud, “In-Situ Epoxidation of Castor Oil Using Heterogeneous Acidic Ion-Exchange Resin Catalyst (IR-120) for Bio-Lubricant Application,” Tribol. Online, Vol. 10, No 5, pp.354-359, 2015. doi: 10.2474/trol.10.354.
[57] M. Phele, I. Ejidike, and F. Mtunzi, “Adsorption efficiency of activated macadamia nutshell for the removal Organochlorine pesticides: Endrin and 4,4-DDT from aqueous solution,” J. Pharm. Sci. Res., Vol.11, No 1, pp.258–262, 2019.
[58] A. Nandiyanto, R. Oktiani, and R. Ragadhita, “How to Read and Interpret FTIR Spectroscope of Organic Material,” Indones. J. Sci. Technol., vol.4, Issue 1, pp.97–118, 2019. doi: 10.17509/ijost. v4i1.15806.
[59] V. B. Borugadda and V. V. Goud, “In-Situ Epoxidation of Castor Oil Using Heterogeneous Acidic Ion-Exchange Resin Catalyst (IR-120) for Bio-Lubricant Application,” Tribol. Online, Vol.10, No 5, pp.354–359, 2015. doi: 10.2474/trol.10.354.
[60] S. Mishra, S. S. Yadav, S. Rawat, J. Singh, and J. R. Koduru, “Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: Interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties,” J. Environ. Manage., vol. 246, pp.362–373, 2019. doi: 10.1016/j.jenvman.2019.06.013.
[61] A. J. Abkowicz-Bie?ko, Z. Latajka, D. C. Bie?ko, and D. Michalska, “Theoretical infrared spectrum and revised assignment for para-nitrophenol. Density functional theory studies,” Chem. Phys., Vol.250, No 2, pp.123–129, 1999. doi: 10.1016/S0301-0104(99)00296-7.
[62] D. Tang, Z. Zheng, K. Lin, J. Luan, and J. Zhang, “Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber,” J. Hazard. Mater., Vol.143, No (1-2), pp.46-56, 2007, doi: 10.1016/j.jhazmat.2006.08.066.
[63] G. B. Adebayo, H. I. Adegoke, and S. Fauzeeyat, “Adsorption of Cr(VI) ions onto goethite, activated carbon and their composite: kinetic and thermodynamic studies,” Appl. Water Sci., Vol. 10, No. 9, p.213, 2020, doi: 10.1007/s13201-020-01295-z.
[64] Y.-Y. Wang, Y. Liu, H.-H. Lu, R.-Q. Yang, and S. Yang, “Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions,” J. Solid State Chem., Vol. 261, pp. 53–61, 2018, doi: 10.1016/j.jssc.2018.02.010.
[65] N. Yadav, D. N. Maddheshiaya, S. Rawat, and J. Singh, “Adsorption and equilibrium studies of phenol and para-nitrophenol by magnetic activated carbon synthesised from cauliflower waste,” Environ. Eng. Res., Vol. 25, No. 5, pp.742-752, 2019. doi: 10.4491/EER.2019.238.
[66] D. Tang, Z. Zheng, K. Lin, J. Luan, and J. Zhang, “Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber,” J. Hazard. Mater., Vol.143, No. (1–2),pp. 49–56, 2007.doi: 10.1016/j.jhazmat.2006.08.066.
[67] E. F. Mohamed, C. Andriantsiferana, A. M. Wilhelm, and H. Delmas, “Competitive adsorption of phenolic compounds from aqueous solution using sludge?based activated carbon,” Environ. Technol., Vol.32, No. 12, pp.1325–1336, 2011. doi: 10.1080/09593330.2010.536783.
[68] I. Mwangi and J. Ngila, “Removal of heavy metals from contaminated water using ethylenediamine-modified green seaweed (Caulerpa serrulata),” Phys. Chem. Earth, Vol.50–52, pp. 111–120, 2012. doi: 10.1016/j.pce.2012.08.015.
[69] N. Z. Zulkurnai, N. W. A. Z. Najib, U. F. M. Ali, and T. R. Shien, “Adsorption of 4-Nitrophenol from wastewater using Sea Mango (Cerbera odollam) based Activated Carbon,” IOP Conf. Ser. Mater. Sci. Eng., Vol. 778, No. 1, pp. 012-154, 2020. doi: 10.1088/1757-899X/778/1/012154.
[70] D. Lataye, I. Mishra, and I. Mall, “Removal of Pyridine from Aqueous Solution by Adsorption on Bagasse Fly Ash,” Industrial & Engineering Chemistry Research, Vol.45, Issue 11. pp 3934-3943, 2006. doi: 10.1021/ie051315w.
[71] P. T. Dhorabe, D. H. Lataye, and R. S. Ingole, “Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from Acacia glauca sawdust,” Water Sci. Technol., Vol.73, No 4, pp.955–966, 2016. doi: 10.2166/wst.2015.575.
[72] C. Du, Y. Xue, Z. Wu, and Z. Wu, “Microwave-assisted one-step preparation of macadamia nut shell-based activated carbon for efficient adsorption of Reactive Blue,” New J. Chem., Vol.41, No. 24, pp. 15373–15383, 2017. doi: 10.1039/C7NJ03208K.
[73] X. Zhou, X. Yu, J. Hao, and H. Liu, “Correction to the thermodynamic calculation using the Langmuir isotherm model by Saeed et al. (2022),” J. Hazard. Mater., Vol.435, p. 129014, 2022. doi: 10.1016/j.jhazmat.2022.129014.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation