Full Paper View Go Back
Deepthi Nagesh1 , B. Nagarajamurthy2 , Bhanuprakash R.3
- Dept. of Studies in Criminology and Forensic Science, Maharaja’s College, University of Mysore, Karnataka, India.
- Dept. of Studies in Criminology and Forensic Science, Maharaja’s College, University of Mysore, Karnataka, India.
- SCIENCE4U Analytics and Research Solutions Pvt. Ltd. Bengaluru, Karnataka, India.
Section:Research Paper, Product Type: Journal-Paper
Vol.11 ,
Issue.4 , pp.11-22, Aug-2024
Online published on Aug 31, 2024
Copyright © Deepthi Nagesh, B. Nagarajamurthy, Bhanuprakash R. . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Deepthi Nagesh, B. Nagarajamurthy, Bhanuprakash R., “Age Estimation of Concealed and Unconcealed Blood Stains on Different Surfaces – A Chemometric Approach,” International Journal of Scientific Research in Chemical Sciences, Vol.11, Issue.4, pp.11-22, 2024.
MLA Style Citation: Deepthi Nagesh, B. Nagarajamurthy, Bhanuprakash R. "Age Estimation of Concealed and Unconcealed Blood Stains on Different Surfaces – A Chemometric Approach." International Journal of Scientific Research in Chemical Sciences 11.4 (2024): 11-22.
APA Style Citation: Deepthi Nagesh, B. Nagarajamurthy, Bhanuprakash R., (2024). Age Estimation of Concealed and Unconcealed Blood Stains on Different Surfaces – A Chemometric Approach. International Journal of Scientific Research in Chemical Sciences, 11(4), 11-22.
BibTex Style Citation:
@article{Nagesh_2024,
author = {Deepthi Nagesh, B. Nagarajamurthy, Bhanuprakash R.},
title = {Age Estimation of Concealed and Unconcealed Blood Stains on Different Surfaces – A Chemometric Approach},
journal = {International Journal of Scientific Research in Chemical Sciences},
issue_date = {8 2024},
volume = {11},
Issue = {4},
month = {8},
year = {2024},
issn = {2347-2693},
pages = {11-22},
url = {https://www.isroset.org/journal/IJSRCS/full_paper_view.php?paper_id=3605},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRCS/full_paper_view.php?paper_id=3605
TI - Age Estimation of Concealed and Unconcealed Blood Stains on Different Surfaces – A Chemometric Approach
T2 - International Journal of Scientific Research in Chemical Sciences
AU - Deepthi Nagesh, B. Nagarajamurthy, Bhanuprakash R.
PY - 2024
DA - 2024/08/31
PB - IJCSE, Indore, INDIA
SP - 11-22
IS - 4
VL - 11
SN - 2347-2693
ER -
Abstract :
Blood stains are commonly encountered at crime scenes, either in visible or hidden forms. Establishing the age of these blood stains is critical for effective crime scene investigation. The current study aimed to develop regression models for accurately estimating the age of concealed blood stains on diverse surfaces. Additionally, the study investigated the effects of luminol and concealment on age estimation. The study utilized ATR-FTIR spectroscopy in combination with Chemometric methods, including PCA (Principal Component Analysis) and OPLSR (Orthogonal Signal Correction Partial Least Square Regression Analysis), to analyze blood stains concealed by paint and treated with luminol on three commonly encountered substrates: cement, metal, and wood. The spectral data were analyzed to develop regression models to estimate the age of blood stains for eleven days. The regression models for concealed blood stains exhibited notable differences compared to those for unconcealed blood stains. The predictive Root Mean Square Error (RMSE) values ranged from 0.87 to 1.82, and R-squared values ranged from 0.76 to 0.94. The model for blood stains on cement surfaces was the most accurate in concealed form, while the model for blood stains on metal surfaces was the best fit in unconcealed form. Furthermore, the model for concealed blood stains on wooden surfaces demonstrated the highest prediction error. The results indicated that the presence of luminol and the composition of the substrates on which blood stains were identified significantly influenced the detection of spectral changes associated with age-related alterations observed in blood stains.
Key-Words / Index Term :
Blood stains, ATR-FTIR Spectroscopy, Chemometrics, PCA, PLSR, Concealed blood stains, Luminol, Nature of Substrates, Cement, Wood, Metal
References :
[1] Richard Li, Forensic Biology. New York: Taylor and Francis Group CRC Press, 2011.
[2] R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. C. van Gemert, and M. C. G. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci Int, vol. 206, no. 1–3, pp. 166–171, Mar. 2011, doi: 10.1016/j.forsciint.2010.07.034.
[3] D. Nagesh and B. Nagarajamurthy, “Estimation of Time-Since-Deposition of bloodstains on different surfaces using ATR-FTIR Spectroscopy and Chemometrics,” Forensic Sci Med Pathol, Jul. 2024, doi: 10.1007/s12024-024-00849-w.
[4] F. Barni, S. W. Lewis, A. Berti, G. M. Miskelly, and G. Lago, “Forensic application of the luminol reaction as a presumptive test for latent blood detection,” May 15, 2007, Elsevier. doi: 10.1016/j.talanta.2006.12.045.
[5] A. Castelló, M. Alvarez, and F. Verdú, “Accuracy, reliability, and safety of luminol in bloodstain investigation,” Journal of the Canadian Society of Forensic Science, vol. 35, no. 3, pp. 113–121, 2002, doi: 10.1080/00085030.2002.10757540.
[6] S. Strasser et al., “Age determination of blood spots in forensic medicine by force spectroscopy,” Forensic Sci Int, vol. 170, no. 1, pp. 8–14, Jul. 2007, doi: 10.1016/j.forsciint.2006.08.023.
[7] A. R. Weber and I. K. Lednev, “Crime clock – Analytical studies for approximating time since deposition of bloodstains,” Forensic Chemistry, vol. 19, Jun. 2020, doi: 10.1016/j.forc.2020.100248.
[8] A. Kumar Gautam, A. Verma, and A. Vyas, “An Overview of Age Estimation in Forensic Science: Based on Techniques and Methods,” International Journal of Scientific Research in Multidisciplinary Studies, vol. 9, no. 10, pp. 1–11, 2023, doi: 10.26438/ijsrms/v9i10.111.
[9] Y. Fujita, K. Tsuchiya, S. Abe, Y. Takiguchi, S. I. Kubo, and H. Sakurai, “Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: Long-term controlled experiment on the effects of environmental factors,” Forensic Sci Int, vol. 152, no. 1, pp. 39–43, Aug. 2005, doi: 10.1016/j.forsciint.2005.02.029.
[10] A. V. Pandya and R. T. Nair, “Spectroscopic Analysis of Conducting Polymeric Material ,” International Journal of Scientific Research in Chem International Journal of Scientific Research in Chemical Sciences, vol. 1, no. 1, 2014.
[11] S. E. Glassford, B. Byrne, and S. G. Kazarian, “Recent applications of ATR FTIR spectroscopy and imaging to proteins,” 2013, Elsevier B.V. doi: 10.1016/j.bbapap.2013.07.015.
[12] A. Takamura, K. Watanabe, T. Akutsu, and T. Ozawa, “Soft and Robust Identification of Body Fluid Using Fourier Transform Infrared Spectroscopy and Chemometric Strategies for Forensic Analysis,” Sci Rep, 2018, doi: 10.1038/S41598-018-26873-9.
[13] R. Kumar and V. Sharma, “Chemometrics in forensic science,” Aug. 01, 2018, Elsevier B.V. doi: 10.1016/j.trac.2018.05.010.
[14] S. Sharma, R. Chophi, J. K. Jossan, and R. Singh, “Detection of bloodstains using attenuated total reflectance-Fourier transform infrared spectroscopy supported with PCA and PCA–LDA,” Med Sci Law, vol. 61, no. 4, pp. 292–301, Oct. 2021, doi: 10.1177/00258024211010926.
[15] G. Edelman, T. G. van Leeuwen, and M. C. G. Aalders, “Hyperspectral imaging for the age estimation of blood stains at the crime scene,” Forensic Sci Int, vol. 223, no. 1–3, pp. 72–77, Nov. 2012, doi: 10.1016/j.forsciint.2012.08.003.
[16] T. Das, A. Harshey, K. Nigam, V. K. Yadav, and A. Srivastava, “Analytical approaches for bloodstain aging by vibrational spectroscopy: Current trends and future perspectives,” Microchemical Journal, 2020, doi: 10.1016/J.MICROC.2020.105278.
[17] R. H. Bremmer, K. G. de Bruin, M. J. C. van Gemert, T. G. van Leeuwen, and M. C. G. Aalders, “Forensic quest for age determination of bloodstains.,” Forensic Sci Int, 2012, doi: 10.1016/J.FORSCIINT.2011.07.027.
[18] G. Zadora and A. Men?yk, “In the pursuit of the holy grail of forensic science – Spectroscopic studies on the estimation of time since deposition of bloodstains,” Trends in Analytical Chemistry, 2018, doi: 10.1016/J.TRAC.2018.04.009.
[19] A. Marrone and J. Ballantyne, “Changes in dry state hemoglobin over time do not increase the potential for oxidative DNA damage in dried blood,” PLoS One, vol. 4, no. 4, Apr. 2009, doi: 10.1371/journal.pone.0005110.
[20] E. K. Hanson and J. Ballantyne, “A blue spectral shift of the hemoglobin soret band correlates with the age (time since deposition) of dried bloodstains,” PLoS One, vol. 5, no. 9, pp. 1–11, 2010, doi: 10.1371/journal.pone.0012830.
[21] A. R. Weber and I. K. Lednev, “Crime clock – Analytical studies for approximating time since deposition of bloodstains,” Forensic Chemistry, 2020, doi: 10.1016/J.FORC.2020.100248.
[22] K. C. Doty, G. McLaughlin, and I. K. Lednev, “A Raman ‘spectroscopic clock’ for bloodstain age determination: the first week after deposition,” Anal Bioanal Chem, 2016, doi: 10.1007/S00216-016-9486-Z.
[23] E. Mistek, L. Halámková, K. C. Doty, C. K. Muro, and I. K. Lednev, “Race Differentiation by Raman Spectroscopy of a Bloodstain for Forensic Purposes,” Anal Chem, vol. 88, no. 15, pp. 7453–7456, Aug. 2016, doi: 10.1021/acs.analchem.6b01173.
[24] E. Mistek and I. K. Lednev, “Identification of species’ blood by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy,” Anal Bioanal Chem, vol. 407, no. 24, pp. 7435–7442, Sep. 2015, doi: 10.1007/s00216-015-8909-6.
[25] H. Sun et al., “Non-invasive prediction of bloodstain age using the principal component and a back propagation artificial neural network,” Laser Phys Lett, vol. 14, no. 9, Sep. 2017, doi: 10.1088/1612-202X/aa7c48.
[26] H. Lin, Y. Zhang, Q. Wang, B. Li, P. Huang, and Z. Wang, “Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy,” Sci Rep, vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-13725-1.
[27] R. Kumar, K. Sharma, and V. Sharma, “Bloodstain age estimation through infrared spectroscopy and Chemometric models.,” Science & Justice, 2020, doi: 10.1016/J.SCIJUS.2020.07.004.
[28] S. H. James, P. E. Kish, and T. P. Sutton, Principles of Bloodstain Pattern Analysis. CRC Press, 2005. doi: 10.1201/9781420039467.
[29] T. L. Laberj and R. P. Epstein2, “ARTICLES SUBSTRATE EFFECTS ON THE CLOTTING TIME OF HUMAN BLOOD,” 2001.
[30] Andrasko J, “The estimation of age of bloodstains by HPLC analysis,” J Forensic Sci, pp. 601–607, 1997.
[31] E. Botoniic-Sehic, C. Brown, M. Lamontaane, and M. Tsaparikos, “Forensic Application of Near-Infrared Spectroscopy: Aging of Bloodstains,” Spectroscopy (Santa Monica), vol. 24, Jun. 2009.
[32] P. Lemler, W. R. Premasiri, A. DelMonaco, and L. D. Ziegler, “NIR Raman spectra of whole human blood: effects of laser-induced and in vitro hemoglobin denaturation,” Anal Bioanal Chem, vol. 406, no. 1, pp. 193–200, Jan. 2014, doi: 10.1007/s00216-013-7427-7.
[33] R. Kumar, K. Sharma, and V. Sharma, “Bloodstain age estimation through infrared spectroscopy and Chemometric models,” Science and Justice, vol. 60, no. 6, pp. 538–546, Nov. 2020, doi: 10.1016/j.scijus.2020.07.004.
[34] S. H. James, P. E. Kish, and T. P. Sutton, Principles of Bloodstain Pattern Analysis. CRC Press, 2005. doi: 10.1201/9781420039467.
[35] L. T. , & H. D. G. Lytle, “Chemiluminescence in the visualization of forensic bloodstains. ,” J Forensic Sci, vol. 23(3), pp. 550–562, 1978.
[36] N. F. N. Hassan, D. D. Sandran, M. Mohamad, Y. Zakaria, and N. Z. M. Muslim, “Estimation of the age of bloodstains on soil matrices by ATR-FTIR spectroscopy and chemometrics,” International Journal of Innovative Technology and Exploring Engineering, vol. 9, no. 1, pp. 4750–4755, Nov. 2019, doi: 10.35940/ijitee.A4454.119119.
[37] A. M. , H. K. A. , & K. G. L. Gross, “The effect of luminol on presumptive tests and DNA analysis using the polymerase chain reaction. ,” J Forensic Sci, vol. 44(4), pp. 837–840, 1999.
[38] D. Patzelt, “History of forensic serology and molecular genetics in the sphere of activity of the German Society for Forensic Medicine,” Forensic Sci Int, vol. 144, no. 2–3, pp. 185–191, Sep. 2004, doi: 10.1016/j.forsciint.2004.04.053.
[39] A. , & M. S. Della Manna, “A novel approach to obtaining reliable PCR results from luminol treated bloodstains.,” J Forensic Sci, vol. 45(4), pp. 886–890, 2000.
[40] B. Li, P. Beveridge, W. T. O’Hare, and M. Islam, “The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis,” Science and Justice, vol. 53, no. 3, pp. 270–277, Sep. 2013, doi: 10.1016/j.scijus.2013.04.004.
[41] P. Cormaci, A. Teatino, and A. Barbaro, “Validation of forensic DNA analysis from bloodstains treated by presumptive test reagents,” Int Congr Ser, vol. 1261, no. C, pp. 631–633, 2004, doi: 10.1016/S0531-5131(03)01539-5.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.