References
[1] [1] N. Vaidya and A. R. Khachane, “Recommender systems-the need of the ecommerce ERA,” 2018, doi: 10.1109/ICCMC.2017.8282616.
[2] [2] K. Shah, A. Salunke, S. Dongare, and K. Antala, “Recommender systems: An overview of different approaches to recommendations,” 2018, doi: 10.1109/ICIIECS.2017.8276172.
[3] [3] A. Liu, S. Lu, Z. Zhang, T. Li, and Y. Xie, “Function recommender system for product planning and design,” CIRP Ann. - Manuf. Technol., 2017, doi: 10.1016/j.cirp.2017.04.041.
[4] [4] F. Dong, J. Luo, X. Zhu, Y. Wang, and J. Shen, “A personalized hybrid recommendation system oriented to E-commerce mass data in the cloud,” 2013, doi: 10.1109/SMC.2013.178.
[5] [5] D. Paul, S. Sarkar, M. Chelliah, C. Kalyan, and P. P. S. Nadkarni, “Recommendation of high quality representative reviews in e-commerce,” 2017, doi: 10.1145/3109859.3109901.
[6] [6] K. Haruna, M. A. Ismail, D. Damiasih, J. Sutopo, and T. Herawan, “A collaborative approach for research paper recommender system,” PLoS One, 2017, doi: 10.1371/journal.pone.0184516.
[7] [7] J. Wei, J. He, K. Chen, Y. Zhou, and Z. Tang, “Collaborative filtering and deep learning based recommendation system for cold start items,” Expert Syst. Appl., 2017, doi: 10.1016/j.eswa.2016.09.040.
[8] [8] T. K. Paradarami, N. D. Bastian, and J. L. Wightman, “A hybrid recommender system using artificial neural networks,” Expert Syst. Appl., 2017, doi: 10.1016/j.eswa.2017.04.046.
[9] [9] B. Ouhbi, B. Frikh, E. Zemmouri, and A. Abbad, “Deep Learning Based Recommender Systems,” 2018, doi: 10.1109/CIST.2018.8596492.
[10] [10] K. Madadipouya and Sivananthan Chelliah, “A Literature Review on Recommender Systems Algorithms, Techniques and Evaluations,” BRAIN. Broad Res. Artif. Intell. Neurosci., 2017.
[11] [11] M. Fellmann, D. Metzger, S. Jannaber, N. Zarvic, and O. Thomas, “Process Modeling Recommender Systems,” Bus. Inf. Syst. Eng., 2018, doi: 10.1007/s12599-018-0517-5.
[12] [12] S. K. Addagarla and A. Amalanathan, “A survey on comprehensive trends in recommendation systems & applications,” Int. J. Electron. Commer. Stud., 2019, doi: 10.7903/ijecs.1705.
[13] [13] L. Quijano-Sánchez, I. Cantador, M. E. Cortés-Cediel, and O. Gil, “Recommender systems for smart cities,” Information Systems. 2020, doi: 10.1016/j.is.2020.101545.
[14] [14] F. Mansur, V. Patel, and M. Patel, “A review on recommender systems,” 2018, doi: 10.1109/ICIIECS.2017.8276182.
[15] [15] Y. Pan, D. Wu, and D. L. Olson, “Online to offline (O2O) service recommendation method based on multi-dimensional similarity measurement,” Decis. Support Syst., 2017, doi: 10.1016/j.dss.2017.08.003.
[16] [16] M. Zhou, Z. Ding, J. Tang, and D. Yin, “Micro behaviors: A new perspective in E-commerce recommender systems,” 2018, doi: 10.1145/3159652.3159671.
[17] [17] X. Wang, X. He, L. Nie, and T. S. Chua, “Item silk road: Recommending items from information domains to social users,” 2017, doi: 10.1145/3077136.3080771.
[18] [18] W. T. So and K. Yada, “A framework of recommendation system based on in-store behavior,” 2017, doi: 10.1145/3092090.3092130.
[19] [19] J. G. Enríquez, L. Morales-Trujillo, F. Calle-Alonso, F. J. Domínguez-Mayo, and J. M. Lucas-Rodríguez, “Recommendation and Classification Systems: A Systematic Mapping Study,” Scientific Programming. 2019, doi: 10.1155/2019/8043905.
[20] [20] M. Taghavi, J. Bentahar, K. Bakhtiyari, and C. Hanachi, “New Insights Towards Developing Recommender Systems,” Computer Journal. 2018, doi: 10.1093/comjnl/bxx056.
[21] [21] Y. Yun, D. Hooshyar, J. Jo, and H. Lim, “Developing a hybrid collaborative filtering recommendation system with opinion mining on purchase review,” J. Inf. Sci., 2017, doi: 10.1177/0165551517692955.
[22] [22] L. Xiaojun, “An improved clustering-based collaborative filtering recommendation algorithm,” Cluster Comput., 2017, doi: 10.1007/s10586-017-0807-6.
[23] [23] N. Ranjbar Kermany and S. H. Alizadeh, “A hybrid multi-criteria recommender system using ontology and neuro-fuzzy techniques,” Electron. Commer. Res. Appl., 2017, doi: 10.1016/j.elerap.2016.12.005.
[24] [24] J. Mawane, A. Naji, and M. Ramdani, “Unsupervised Deep Collaborative Filtering Recommender System for E-Learning Platforms,” in Communications in Computer and Information Science, Jun. 2020, vol. 1207 CCIS, pp. 146–161, doi: 10.1007/978-3-030-45183-7_11.
[25] [25] T. Rutkowski, J. Romanowski, P. Woldan, P. Staszewski, R. Nielek, and L. Rutkowski, “A content-based recommendation system using neuro-fuzzy approach,” 2018, doi: 10.1109/Fuzz-Ieee.2018.8491543.
[26] [26] S. Ayyaz, U. Qamar, and R. Nawaz, “HCF-CRS: A Hybrid content based fuzzy conformal recommender system for providing recommendations with confidence,” PLoS One, 2018, doi: 10.1371/journal.pone.0204849.
[27] [27] A. Razia Sulthana and S. Ramasamy, “Ontology and context based recommendation system using Neuro-Fuzzy Classification,” Comput. Electr. Eng., 2019, doi: 10.1016/j.compeleceng.2018.01.034.
[28] [28] M. Bhatia, S. K. Sood, and R. Kumari, “Fuzzy-inspired decision making for dependability recommendation in e-commerce industry,” Intell. Decis. Technol., 2020, doi: 10.3233/idt-190143.
[29] [29] H. Hwangbo, Y. S. Kim, and K. J. Cha, “Recommendation system development for fashion retail e-commerce,” Electron. Commer. Res. Appl., 2018, doi: 10.1016/j.elerap.2018.01.012.
[30] [30] M. Ashraf and Z. Hussain, “Multi-Criteria Decision Based Recommender System using Fuzzy Linguistics Model for E-Commerce,” Int. J. Sci. Res. Sci. Technol. , 2018.
[31] [31] Y. Guo, M. Wang, and X. Li, “Application of an improved Apriori algorithm in a mobile e-commerce recommendation system,” Ind. Manag.