References
[1] G. Toldi, “The regulation of Calcium homeostasis in T lymphoctes”, Frontiers in immunology, Vol.4, pp.1-2, 2013.
[2] C. Kummerow, C. Junker, K. Kruse, H. Rieger, A. Quintana, M. Hoth, “The immunological synapse controls local and global calcium signals in T lymphocytes”, Immunological reviews, Vol.231, Issue.1, pp.132-147, 2009.
[3] M.D. Cahalan, K.G. Chandy, “The functional network of ion channels in T-lymphocytes”, Immunological reviews, Vol.231, Issue.1, pp.59-87, 2009.
[4] S. Feske, E.Y. Skolnik, M. Prakriya, “Ion channels and transporters in lymphocyte function and immunity”, Nature Reviews Immunology, Issue.12, Issue.7,pp.532-47, 2012.
[5] K. Tsaneva-atanasova, T.J. Shuttle worth, D. I. Yule, J.L. Thompson, J. Sneyd, “Calcium Oscillations and Membrane Transport”, Multiscale Modeling & Simulation, Vol.3, Issue.2, pp.245-64, 2005.
[6] E. Neher, “Concentration profiles of intracellular Ca2+ in the presence of diffusible chelators”, Experiment Brain Reseasrch, Vol.14, pp.80-96, 1986.
[7] Y. Tang, T. Schlumpberger, T. Kim, M. Lueker, R.S. Zucker, “Effects of Mobile Buffers on Facilitation: Experimental and Computational Studies”, Biophysics journal, Vol.78, pp.2735-2751, 2000.
[8] C. Schmeitz, E.A. Hernandez-Vargas, R. Fliegert, A.H. Guse and M. M. Hermann, “A mathematical model of T lymphocyte calcium dynamics derived from single transmembrane protein properties”, Frontiers in immunology, Vol.4, pp.1-16, 2013.
[9] I.M.A. Ernst, R. Fliegert, A. H. Guse, “Adenine dinucleotide second messengers and T lymphocyte calcium signaling”, Front Immunology, Vol.4, pp.1-7, 2013.
[10] P. Hou, R. Zhang, Y. Liu, J. Feng, W. Wang, Y. Wu, J. Ding, “Physiological Role of Kv1.3 Channel in T Lymphocyte Cell Investigated Quantitatively by Kinetic Modeling”, PLOSe One, Vol.9, Issue.3, pp.1-9, 2014.
[11] G. D. Smith, “Analytical Steady State Solution to the rapid buffering approximation near an open Ca2+ channel”, Biophysical journal, Vol.71, Issue.6, pp.3064-3072, 1996.
[12] S. Tewari and K. R. Pardasani, “Finite Difference Model to Study the effects of Na+ Influx on Cytosolic Ca2+ Diffusion”, World Academy of Science, Engineering and Technology, Vol.2, pp.23-34, 2008.
[13] S. Tewari, K. R. Pardasani, “Finite Element Model to Study Two Dimensional Unsteady State Cytosolic Calcium Diffusion in Presence of Excess Buffers”, IAENG International Journal of Applied Mathematics, Vol.40, Issue.3, pp.108-112, 2010.
[14] A. Tripathi, N. Adlakha, “Finite Volume Model to Study Calcium Diffusion in Neuron Involving JRyR, JSERCA, and JLEAK”, Journal of Computing, Vol.3, Issue11, pp.41-46, 2011.
[15] A. Tripathi, N. Adlakha, “Finite Volume Model to Study Calcium Diffusion In Neuron Cell Under Excess Buffer Approximation”, International J. of Math. Sci & Engg. Appls. (IJMSEA), Vol.5, No.3, pp. 437-447, 2011.
[16] A. Tripathi, N. Adlakha, “Two Dimensional Coaxial Circular Elements in FEM to Study Calcium Diffusion in Neuron Cells”, International Journal of Mathematical Sciences and Engineering Application, Vol. 6, no. 10, 455-466, 2012.
[17] B.K. Jha, N. Adlakha, M.N. Mehta, “Finite Volume Model to Study the Effect of Buffer on Cytosolic Ca2+ Advection Diffusion”, International Journal of Engineering and Natural Sciences, Vol.4, Issue.3, pp.160-163, 2010.
[18] B.K. Jha, N. Adlakha, M.N. Mehta, “Analytic Solution of Two Dimensional Advection Diffusion Equation Arising In Cytosolic Calcium Concentration Distribution”, International Mathematical Forum Vol.7, No.3, pp.135-144, 2012.
[19] P.A. Naik and K.R. Pardasani, “Finite Element Model to Study Radial Calcium Distribution in Oocytes: A one dimensional steady state case study”, International Journal of Advanced Research, Vol.2, Issue.1, pp.57-66, 2014.
[20] P.A. Naik, K.R. Pardasani, “Finite Element Model to Study Effect of Buffers in Presence of Voltage Gated Ca2+ Channels on Calcium Distribution in Oocytes for One Dimensional Unsteady State Case”, International Journal of Modern Biology and Medicine, Vol.4, Issue.3, pp.190-203, 2013.
[21] P. A. Naik, K. R. Pardasani, “Finite Element Model to Study Effect of Na+/K+ pump and Na+/Ca2+ Exchanger on Calcium Distribution in Oocytes in Presence of Buffers”, Asian Journal of Mathematics and Statistics, Vol.7, Issue.1, pp.21-28, 2014.
[22] S. Panday, K.R. Pardasani, “Finite Element Model to Study Effect of Buffers Along With Leak from ER on Cytosolic Ca2+ Distribution in Oocyte”, IOSR Journal of Mathematics (IOSR-JM) ISSN: 2278-5728, Volume 4, Issue 5, pp. 01-08, 2013.
[23] S. Panday, K.R. Pardasani, “Finite Element Model to Study Effect of Advection Diffusion and Na+/Ca2+ Exchanger on Ca2+ Distribution in Oocytes”, Journal of Medical Imaging and Health Informatics, Vol.52, Issue.1, pp.374-379, 2013.
[24] S. Panday, K. R. Paradasani, “Finite Element Model to Study the Mechanics of Calcium Regulation in Oocyte”, Journal of Mechanics in Medicine and Biology, Vol.14, Issue.2, pp.1-16, 2014.
[25] N. Manhas, J. Sneyd, K.R. Pardasani, “Modelling the transition from simple to complex Ca2+ oscillations in pancreatic acinar cells”, Journal of Biosciences, Vol.39, Issue.3, pp.463-484, 2014.
[26] M. Kotwani, N. Adlakha, M.N. Mehta, “Numerical Model to Study Calcium Diffusion in Fibroblasts Cell for One Dimensional Unsteady State Case”, Applied Mathematical Sciences, Hikari, Vol.6, Issue.102, pp.5063-5072, 2012.
[27] M.D. Bootman, P. Lipp, “Calcium Signalling and Regulation of Cell Function”, Encyclopedia of Life Science published by Nature Publishing Group, london, pp.321-347, 2001.