References
[1] T. Ma, Y. Wang, “Ruiping Land cover/land use classification based on microwave remote sensing polarization target decomposition,” Agriculture Gongcheng Xuebao/Journal of Chinese Agricultural Engineering Society, Vol.31, Issue.2, pp. 259–265, 2015.
[2] M.F. Bruno, M.G. Molfetta, M. Mossa, R. Nutricato, A. Morea, M.T. Chiaradia, “Coastal observation through COSMO-skymed high-resolution SAR images,” J. Coast. Res., Vol.75, pp.795–799, 2016.
[3] N. Valentini, A. Saponieri, M.G. Molfetta, L. Damiani, “New algorithms for shoreline monitoring from coastal video systems,” Earth Sci. Inform., Vol.10, pp.495–506, 2017. [CrossRef]
[4] Y. El Yousfi, M. Himi, H. El Ouarghi, M. Elgettafi, S. Benyoussef, H. Gueddari, M. Aqnouy, A. Salhi, A. Alitane, “Hydrogeochemical and Statistical Approach to Characterize Groundwater Salinity in the Ghiss-Nekkor Coastal Aquifers in the Al Hoceima Province, Morocco,” Groundw. Sustain. Dev., Vol.19, pp.100818, 2022.
[5] X. Liu, N. Adil, X. Ma, “Long-term Land Cover Change Detection Using Multisensor and Multiresolution Remote Sensing Images: A Case Study of Chang’an University, China,” Sensors and Materials, Vol.33, Issue.12, pp.4561–4577, 2021.
[6] S. Sarkar, D.P. Kanungo, “An Integrated Approach for Landslide Susceptibility Mapping Using Remote Sensing and GIS,” Photogramm. Eng. Remote Sens., Vol.70, pp.617–625, 2004.
[7] A. Alitane, A. Essahlaoui, M. El Hafyani, A. El Hmaidi, A. El Ouali, A. Kassou, Y. El Yousfi, A. Van Griensven, C.J. Chawanda, A. Van Rompaey, “Water Erosion Monitoring and Prediction in Response to the Effects of Climate Change Using RUSLE and SWAT Equations: Case of R’Dom Watershed in Morocco,” Land, Vol.11, p.93, 2022. [CrossRef]
[8] B. Petrovska, E. Zdravevski, P. Lameski, R. Corizzo, I. Štajduha, J. Lerga, “Deep Learning for Feature Extraction in Remote Sensing: A Case-Study of Aerial Scene Classification,” Sensors, Vol.20, p.3906, 2020. doi:10.3390/s20143906
[9] K.E. Joyce, S.E. Belliss, S.V. Samsonov, S.J. McNeill, P.J. Glassey, “A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters,” Progress in Physical Geography, Vol.33, Issue.2, pp.183–207, 2009. doi:10.1177/0309133309339563
[10] L. Grinias, C. Panagiotakis, G. Tziritas, MRF-based Segmentation and Unsupervised Classification for Building and Road Detection in Peri-urban Areas of High-resolution Satellite Images,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol.122, pp.145–166, 2016. doi:10.1016/j.isprsjprs.2016.10.010
[11] C. RomeroGata G. Camps-Vals, “Unsupervised Deep Feature Extraction for Remote Sensing Image Classification,” IEEE Transactions on Geoscience and Remote Sensing, Vol.54, Issue.3, pp.1349–1362, 2015.
[12] C. Shu, L. Sun, “Automatic Target Recognition Method for Multi-temporal Remote Sensing Image,” Open Physics, Vol.18, pp.170–181, 2020. https://doi.org/10.1515/phys-2020-0015
[13] Neves, et al., Hierarchical classification of Brazilian savanna physiognomies using very high spatial resolution image, superpixel and GEOBIA, in: IGARSS 2019, IEEE, pp. 3716–3719, 2019.
[14] Schwieder, et al., Mapping Brazilian savanna vegetation gradients with landsat time series, IJAEOG Vol.52, pp.361–370, 2016.
[15] Nogueira, et al., Towards vegetation species discrimination by using data– driven descriptors, in: 2016 9th IAPR Workshop on Pattern Recogniton in Re- mote Sensing (PRRS), IEEE, 2016, pp.1–6, 2016.
[16] Müller et al., “Mining Dense Landsat Time Series for Separating Cropland and Pasture in a Heterogeneous Brazilian Savanna Landscape,” Remote Sens. Environ., Vol.156, pp.490–499, 2005.
[17] Neves et al., Combining Time Series Features and Data Mining to Detect Land Cover Patterns: A Case Study in Northern Mato Grosso State, Brazil. Revista Brasileira de Cartografia, Vol.68, Issue.6, 2016.
[18] Bendini et al., “Detailed Agricultural Land Classification in the Brazilian Cerrado Based on Phenological Information from Dense Satellite Image Time Series, IJAEOG Vol.82, p.101872, 2019
[19] C. Cao, X. Fan, and Q. Liu, “A Practical Pattern Recognition System for Distributed Optical Fiber Intrusion Monitoring Based on COTDR,” ZTE, Vol. 15, Issue.3, pp.52–55, 2017.
[20] H. Xie, H. Huang, “Classification of Land Cover Remote-Sensing Images Based on Pattern Recognition,” Scientific Programming, Article ID p.8319692, 15 pages, 2022. Available from https://doi.org/10.1155/2022/8319692
[21] Y. Liu, W. Yang, and Y. Ma, “Research on Extraction of HCS Fusion Corn Planting Area Based on High Spatiotemporal Remote Sensing Data,” Journal of Shenyang Jianzhu University, Vol.33, Issue.2, pp.314–322, 2017.
[22] S.W. Hue, A. Korom, Y.W. Seng, V. Sihapanya, S. Phimmavong, M.H. Phua, “Land use and land cover change in vientiane area, Lao PDR using object-oriented classification on multi-temporal Landsat data,” Advanced Science Letters, Vol.23, Issue.11, pp. 11340–11344, 2017.
[23] O. Masato, S. Masanobu, “Large-area land use and land cover classification based on PALSAR-2 quad-polarization, compact and dual-polarization SAR data,” IEEE Transactions on Geoscience and Remote Sensing, Vol.56, Issue.99, pp. 1–8, 2018.
[24] Z. Adiri, A. El Harti, A. Jellouli, L. Maacha, E.M. Bachaoui, “Lithological Mapping Using Landsat 8 OLI and Terra ASTER Multispectral Data in the Bas Drâa Inlier, Moroccan Anti Atlas,” J. Appl. Remote Sens., Vol.10, p.016005, 2016. [CrossRef]
[25] S.S. Baboo, M.R. Devi, “Geometric Correction in Recent High Resolution Satellite Imagery: A Case Study in Coimbatore,” Tamil Nadu. Int. J. Comput. Appl. 2011, 14, 32–37. [CrossRef]
[26] C.P., Dave, R. Joshi, S.S. Srivastava, “A Survey on Geometric Correction of Satellite Imagery,” Int. J. Comput. Appl., 116, 24–27, 2015.
[27] Z. Shun, D. Li, H. Jiang, J. Li, R. Peng, B. Lin, Q. Liu, X. Gong, X. Zheng, T. Liu, Research on remote sensing image extraction based on deep learning. PeerJ Comput. Sci., Vol.8, pp.e847, 2022. DOI 10.7717/peerj-cs.847. [30 pages].
[28] C. Begeman, D. Helder, L. Leigh, C. Pinkert, “Relative Radiometric Correction of Pushbroom Satellites Using the Yaw Maneuver,” Remote Sens., Vol.14, p.2820, 2022. [CrossRef]
[29] T. Cooley, G.P. Anderson, G.W. Felde, M.I. Hoke, A.J. Ratkowski, J.H. Chetwynd, J.A. Gardner, S.M. Adler-Golden, M.W. Matthew, A. Berk, FLAASH, a MODTRAN4-Based Atmospheric Correction Algorithm, Its Application and Validation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Vol.3, pp. 1414–1418.
[30] A. Iwasaki, H. Tonooka, “Validation of a Crosstalk Correction Algorithm for ASTER/SWIR,” IEEE Trans. Geosci. Remote Sens., Vol.43, pp.2747–2751, 2005. [CrossRef]
[31] F. Palluconi, G. Hoover, R. Alley, M. Jentoft-Nilsen, T. Thompson, “An Atmospheric Correction Method for ASTER Thermal Radiometry over Land. Algorithm,” Theor. Basis Doc., Vol.36, pp.1199–1211, 1999.
[32] Liu PL. “Remote Sensing Image Change Detection Technology Based on Local Cross-Correlation,” Nav Ship Electron Eng., Vol.36, Issue.7, pp.150–153, 2016.
[33] M.J. Swain, D.H. Ballard, “Color indexing,” Int. J. Comput. Vis., Vol.7, pp.11–32, 1991. [CrossRef]
[34] V. Risojevic, Z. Babic, “Aerial Image Classification using Structural Texture Similarity,” In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 14–17 December 2011; pp.190–195.
[35] B.S. Manjunath, W.-Y. Ma, “Texture features for browsing and retrieval of image data,” IEEE Trans. Pattern Anal. Mach. Intell., Vol.18, pp.837–842, 1996. [CrossRef]
[36] Sowmya D. R., P. Deepa Shenoy, Venugopal K. R. Remote Sensing Satellite Image Processing Techniques for Image Classification: A Comprehensive Survey. International Journal of Computer Applications, Vol.161, Issue.11, 2017.