Full Paper View Go Back

Generalization of Determinant Kernels for Non-Square Matrix and its Application in Video Retrieval

Mohammad Jafari1 , Neda Abdollahi2 , Ali Amiri3 , Mahmood Fathy4

Section:Research Paper, Product Type: Isroset-Journal
Vol.3 , Issue.4 , pp.1-6, Jul-2015


Online published on Sep 08, 2015


Copyright © Mohammad Jafari, Neda Abdollahi, Ali Amiri, Mahmood Fathy . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Mohammad Jafari, Neda Abdollahi, Ali Amiri, Mahmood Fathy, “Generalization of Determinant Kernels for Non-Square Matrix and its Application in Video Retrieval,” International Journal of Scientific Research in Computer Science and Engineering, Vol.3, Issue.4, pp.1-6, 2015.

MLA Style Citation: Mohammad Jafari, Neda Abdollahi, Ali Amiri, Mahmood Fathy "Generalization of Determinant Kernels for Non-Square Matrix and its Application in Video Retrieval." International Journal of Scientific Research in Computer Science and Engineering 3.4 (2015): 1-6.

APA Style Citation: Mohammad Jafari, Neda Abdollahi, Ali Amiri, Mahmood Fathy, (2015). Generalization of Determinant Kernels for Non-Square Matrix and its Application in Video Retrieval. International Journal of Scientific Research in Computer Science and Engineering, 3(4), 1-6.

BibTex Style Citation:
@article{Jafari_2015,
author = {Mohammad Jafari, Neda Abdollahi, Ali Amiri, Mahmood Fathy},
title = {Generalization of Determinant Kernels for Non-Square Matrix and its Application in Video Retrieval},
journal = {International Journal of Scientific Research in Computer Science and Engineering},
issue_date = {7 2015},
volume = {3},
Issue = {4},
month = {7},
year = {2015},
issn = {2347-2693},
pages = {1-6},
url = {https://www.isroset.org/journal/IJSRCSE/full_paper_view.php?paper_id=197},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRCSE/full_paper_view.php?paper_id=197
TI - Generalization of Determinant Kernels for Non-Square Matrix and its Application in Video Retrieval
T2 - International Journal of Scientific Research in Computer Science and Engineering
AU - Mohammad Jafari, Neda Abdollahi, Ali Amiri, Mahmood Fathy
PY - 2015
DA - 2015/09/08
PB - IJCSE, Indore, INDIA
SP - 1-6
IS - 4
VL - 3
SN - 2347-2693
ER -

2617 Views    2405 Downloads    2248 Downloads
  
  

Abstract :
For a specific set of features selected for representing videos, the performance of a content-based video retrieval system depends critically on the similarity or dissimilarity measures used. In this paper, we propose a kernel approach to improve the retrieval performance of content-based video retrieval systems namely determinant kernel. The input of this kernel is the dot product of feature matrices that extracted from shot visual information. Due to the variation in the number of each shot frames, the size of feature matrices are different and so the result of dot product become a non-square matrices. Almost all available techniques use summarizing methods to equalize the size of the matrices which lead to loss some parts of information. To solve this problem, we present a non-square determinant kernel based on Radic’s definition. We evaluate the performance of the derived Kernels by retrieving video shots of news and speaking videos. Experimental results confirm the effectiveness of our proposed algorithm.

Key-Words / Index Term :
Content-based video retrieval; determinant kernel; non-square matrices; similarity measurement; feature matrix

References :
[1] J. Yuan, H. Wang, L. Xiao, W. Zheng, J. Li, F. Lin, B. Zhang, “A Formal Study of Shot Boundary Detection,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 17, no. 2, pp. 168-186, 2007.
[2] W.M. Hu, N. Xie, L. Li, X. Zeng, S.J. Maybank, "A Survey on Visual Content-Based Video Indexing and Retrieval," SMC-C(41), no. 6, pp. 797-819, November 2011.
[3] J. Yuan, H. Wang, L. Xiao, W. Zheng, J. Li, F. Lin, B. Zhang, “A formal study of shot boundary detection,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 2, pp. 168–186, 2007.
[4] A. F. Smeaton, P. Over, A. R. Doherty, “Video shot boundary detection: Seven years of TRECVid activity,” Comput. Vis. Image Understanding, vol. 114, no. 4, pp. 411–418, 2010.
[5] K. W. Sze, K. M. Lam, G. P. Qiu, “A new key frame representation for video segment retrieval,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 9, pp. 1148–1155, 2005.
[6] B. T. Truong, S. Venkatesh, “Video abstraction: A systematic review and classification,” ACM Trans. Multimedia Comput., Commun. Appl., vol. 3, no. 1, art. 3, pp. 1–37, 2007.
[7] D. Besiris, F. Fotopoulou, N. Laskaris, G. Economou, “Key frame extraction in video sequences: A vantage points approach,” in Proc. IEEE Workshop Multimedia Signal Process., Athens, Greece, pp. 434–437, 2007.
[8] D. P. Mukherjee, S. K. Das, S. Saha, “Key frame estimation in video using randomness measure of feature point pattern,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 5, pp. 612–620, 2007.
[9] R. Yan, A. G. Hauptmann, “A review of text and image retrieval approaches for broadcast news video,” Inform. Retrieval, vol. 10, pp. 445–484, 2007.
[10] A. G. Hauptmann, R. Baron, M. Y. Chen, M. Christel, P. Duygulu, C. Huang, R. Jin, W. H. Lin, T. Ng, N. Moraveji, N. Papernick, C. Snoek, G. Tzanetakis, J. Yang, R. Yan, H. Wactlar, “Informedia at TRECVID 2003: Analyzing and searching broadcast news video,” in Proc. TREC Video Retrieval Eval., Gaithersburg,MD,2003.Available:http://www-nlpir.nist.gov/projects/tvpubs/tvpapers03/cmu.final.paper.pdf
[11] E. Cooke, P. Ferguson, G. Gaughan, C. Gurrin, G. Jones, H. L. Borgue, H. Lee, S. Marlow , K. McDonald, M. McHugh, N. Murphy , N. O’Connor, N. O’Hare, S. Rothwell, A. Smeaton, P. Wilkins, “TRECVID 2004 experiments in Dublin city university,” in Proc. TREC Video Retrieval Eval., Gaithersburg, MD, 2004. Available: http://wwwnlpir.nist.gov/projects/tvpubs/tvpapers04 /dcu.pdf.
[12] W. M. Hu, D. Xie, Z. Y. Fu, W. R. Zeng, S. Maybank, “Semantic based surveillance video retrieval,” IEEE Trans. Image Process., vol. 16, no. 4, pp. 1168–1181, 2007.
[13] J. Sivic, A. Zisserman, “Video Google: Efficient visual search of videos,” in Toward Category-Level Object Recognition.. Berlin, Germany: Springer, pp. 127–144, 2006.
[14] Y. Aytar, M. Shah, J. B. Luo, “Utilizing semantic word similarity measures for video retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 1–8, 2008.
[15] C.G.M. Snoek, M. Worring, “Multimodal video indexing: A review of the state-of-the-art,” Multimedia Tools Appl., vol. 25, no. 1, pp. 5–35, 2005.
[16] P. Browne, A. F. Smeaton, “Video retrieval using dialogue, keyframe similarity and video objects,” in Proc. IEEE Int. Conf. Image Process., vol. 3, pp. 1208–1211, 2005.
[17] C.G.M. Snoek, B. Huurnink, L. Hollink, M. de Rijke, G. Schreiber, M. Worring, “Adding semantics to detectors for video retrieval,” IEEE Trans. Multimedia, vol. 9, no. 5, pp. 975–985, 2007.
[18] T. Volkmer, A. Natsev, “Exploring automatic query refinement for text-based video retrieval,” in Proc. IEEE Int. Conf. Multimedia Expo., Toronto, pp. 765–768, 2006.
[19] A. Amir, W. Hsu, G. Iyengar, C. Y. Lin, M. Naphade, A. Natsev, C. Neti, H. J. Nock, J. R. Smith, B. L. Tseng, Y. Wu, D. Zhang, “IBM research TRECVID-2003 video retrieval system,” in Proc. TREC Video Retrieval Eval., Gaithersburg, MD, 2003. Available: http://wwwnlpir.nist.gov/projects/tvpubs/ tvpapers03 /ibm.smith.paper.final2.pdf
[20] H. Sahbi, “Kernel PCA for similarity in variant shape recognition,” Journal of Neuro Computing, vol. 70, pp. 3034–3045. , 2006
[21] P.H. Gosselin, M. Cord, S. Philipp-Foliguet, “Combining visual dictionary, kernel-Based similarity and learning strategy for image category retrieval,” Special issue on Similarity matching in computer vision and multimedia, Computer Vision and Image Understanding, vol. 110, no. 3, pp. 403–417, 2008.
[22] A. Nasser, D. Hamad, J. L. Rouas, S. Ambellouis, “The use of kernel methods for audio events detection,” International Conference on Information and Communication Technologies: From Theory to Applications, pp.1–6, 2008.
[23] Y. Chen, J.Z. Wang, “Image categorization by learning and reasoning with regions,” International Journal on Machine Learning Research, vol. 5, pp. 913–939, 2004.
[24] R. Hoi, S.C.H. Jin, M.R. Lyu, “Learning non parametric kernel matrices from pair wise constraints,” 24th International Conference on Machine Learning (ICML’07), pp. 361–368, 2007.
[25] D.Y. Yeung, H. Chang, “A Kernel Approach for semi-supervised metric learning,” IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 141–149, 2007.
[26] D.Y. Yeung, H. Chang, G. Dai, “A scalable kernel-based semi-supervised metric learning algorithm with out-of-sample generation ability,” Neural Computation, vol. 20, no. 1, pp. 2839–2861, 2008.
[27] B. Scholkopf, A. Smola, K.R. Muller, “Nonlinear component analysis as a kernel eigenvalue problem,” Neural Computation, vol. 10, pp. 1299–1319, 1998.
[28] G. Baudat, F. Anouar, “Generalized discriminate analysis using a kernel approach,” Neural Computation, vol. 12, pp. 2385–2404, 2000.
[29] F. Perronnin, C.R. Dance, “Fisher kernels on visual vocabularies for image categorization,” IEEE Conference on Computer Vision & Pattern Recognition, 2007.
[30] S.K. Zhou, ‘Trace and determinant kernels between matrices’, SCR technical report, 2004.
[31] M. Radic, ‘A definition of the determinant of a rectangular matrix’, Glasnik Mat, vol. 1, no. 21, pp. 17-22, 1966.
[32] A. Amiri, M. Fathy, “Hierarchical Keyframe-based Video summarization Using QR Decomposition and modified k-means clustering,” EURASIP Journal on Advances in Signal Processing, Article ID 892124, 16 Pages, 2010.
[33] NIST, “Homepage of Trecvid Evaluation,” http://www-nlpir.nist.gov/projects/trecvid/.
[34] A. Amiri, M. Fathy, “Video shot boundary detection using QR-Decomposition and Gaussian transition detection,” EURASIP Journal on Advances in Signal Processing, 12 pages, 2009.
[35] A. Amiri, N. Abdollahi, M. Jafari, M. Fathy, “Hierarchical Key-Frame Based Video Shot Clustering Using Generalized Trace,” Journal of Innovative Computing Technology, Springer-Verlag Berlin Heidlberg, pp. 251-257, 2011.
[36] N. Abdollahi, M. Jafari, M. Bayat, A. Amiri, M. Fathy, “An Efficient Parallel Algorithm for Computing Determinant of Non-Square Matrices Based on Radic’s Definition,” International Journal of Distributed and Parallel Systems (IJDPS) Vol.6, No.4, 2015.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation