Full Paper View Go Back

Real-time Ad Click Prediction: Logistic Regression vs. Decision Tree

Divyanshu Prajapati1 , Indranil Samanta2 , Amit Kumar3 , Pankaj Dumka4

Section:Research Paper, Product Type: Journal-Paper
Vol.12 , Issue.6 , pp.36-42, Dec-2024


Online published on Dec 31, 2024


Copyright © Divyanshu Prajapati, Indranil Samanta, Amit Kumar, Pankaj Dumka . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Divyanshu Prajapati, Indranil Samanta, Amit Kumar, Pankaj Dumka, “Real-time Ad Click Prediction: Logistic Regression vs. Decision Tree,” International Journal of Scientific Research in Computer Science and Engineering, Vol.12, Issue.6, pp.36-42, 2024.

MLA Style Citation: Divyanshu Prajapati, Indranil Samanta, Amit Kumar, Pankaj Dumka "Real-time Ad Click Prediction: Logistic Regression vs. Decision Tree." International Journal of Scientific Research in Computer Science and Engineering 12.6 (2024): 36-42.

APA Style Citation: Divyanshu Prajapati, Indranil Samanta, Amit Kumar, Pankaj Dumka, (2024). Real-time Ad Click Prediction: Logistic Regression vs. Decision Tree. International Journal of Scientific Research in Computer Science and Engineering, 12(6), 36-42.

BibTex Style Citation:
@article{Prajapati_2024,
author = {Divyanshu Prajapati, Indranil Samanta, Amit Kumar, Pankaj Dumka},
title = {Real-time Ad Click Prediction: Logistic Regression vs. Decision Tree},
journal = {International Journal of Scientific Research in Computer Science and Engineering},
issue_date = {12 2024},
volume = {12},
Issue = {6},
month = {12},
year = {2024},
issn = {2347-2693},
pages = {36-42},
url = {https://www.isroset.org/journal/IJSRCSE/full_paper_view.php?paper_id=3719},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRCSE/full_paper_view.php?paper_id=3719
TI - Real-time Ad Click Prediction: Logistic Regression vs. Decision Tree
T2 - International Journal of Scientific Research in Computer Science and Engineering
AU - Divyanshu Prajapati, Indranil Samanta, Amit Kumar, Pankaj Dumka
PY - 2024
DA - 2024/12/31
PB - IJCSE, Indore, INDIA
SP - 36-42
IS - 6
VL - 12
SN - 2347-2693
ER -

79 Views    104 Downloads    8 Downloads
  
  

Abstract :
This study studies the usefulness of different algorithms based on machine learning viz. Logistic Regression and Decision Tree, in forecasting the real-time ad clicks. Python has been used to implement and evaluate these models on a static dataset. Compared to Logistic Regression, the Decision Tree model has established better performance i.e. attaining an F1-score of 0.744 versus 0.7154. However, the Decision Tree`s performance might be affected by overfitting and dataset characteristics. Future research should explore joint methods, deep learning, addressing imbalanced data, and privacy-preserving techniques to improve ad click prediction models.

Key-Words / Index Term :
Ad click prediction; Logistic regression; Linear regression; Decision tree; Python programming

References :
[1] H. B. Mcmahan et al., “Ad click prediction: A view from the trenches,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. Part F1288, pp. 1222–1230, 2013, doi: 10.1145/2487575.2488200.
[2] S. Saraswathi, V. Krishnamurthy, D. Venkata Vara Prasad, R. K. Tarun, S. Abhinav, and D. Rushitaa, “Machine learning based ad-click prediction system,” Int. J. Eng. Adv. Technol., vol. 8, no. 6, pp. 3646–3648, 2019, doi: 10.35940/ijeat.F9366.088619.
[3] A. Clemenshia and V. M., “Click Through Rate Prediction for Display Advertisement,” Int. J. Comput. Appl., vol. 136, no. 1, pp. 18–24, 2016, doi: 10.5120/ijca2016908332.
[4] R. Kumar, S. M. Naik, V. D. Naik, S. Shiralli, V. G. Sunil, and M. Husain, “Predicting clicks: CTR estimation of advertisements using Logistic Regression classifier,” in Souvenir of the 2015 IEEE International Advance Computing Conference, IACC 2015, 2015, pp. 1134–1138. doi: 10.1109/IADCC.2015.7154880.
[5] O. S. Bratus and P. I. Bidyuk, “Towards Click-Through Rate Prediction in Online Advertising,” Probl. Appl. Math. Math. Model., pp. 3–17, 2024, doi: 10.15421/322301.
[6] Y. Yang and P. Zhai, “Click-through rate prediction in online advertising: A literature review,” Inf. Process. Manag., vol. 59, no. 2, p. 102853, 2022, doi: https://doi.org/10.1016/j.ipm.2021.102853.
[7] M. Kamal and T. A. Bablu, “International Journal of Applied Machine Learning and Computational Intelligence Machine Learning Models for Predicting Click-through Rates on social media: Factors and Performance Analysis,” Int. J. Appl. Mach. Learn. Comput. Intell., vol. 4, no. 11, pp. 1–14, 2022.
[8] A. Shah and S. Nasnodkar, “The Impacts of User Experience Metrics on Click-Through Rate (CTR) in Digital Advertising: A Machine Learning Approach,” Sage Sci. Rev. Appl. Mach. Learn. , vol. 4, no. 1, pp. 27–44, 2021, [Online]. Available: https://journals.sagescience.org/index.php/ssraml/article/view/82
[9] E. Bicici, “Instance Weighting in Neural Networks for Click-Through Rate Prediction,” in 2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023, 2023, pp. 1–5. doi: 10.1109/ASYU58738.2023.10296657.
[10] G. De Ath and K. E. Fabricius, “Death Fabricius_2000 _CART,” Ecology, vol. 81, no. 11. pp. 3178–3192, 2000.
[11] M. T. Hagan, H. B. Demuth, and M. Beale, Neural network design. PWS Publishing Co., 1997.
[12] P. Dhruv and S. Naskar, “Image Classification Using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN): A Review,” in Machine Learning and Information Processing, D. Swain, P. K. Pattnaik, and P. K. Gupta, Eds., Singapore: Springer Singapore, 2020, pp. 367–381.
[13] I. Banerjee et al., “Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification,” Artif. Intell. Med., vol. 97, pp. 79–88, 2019, doi: https://doi.org/10.1016/j.artmed.2018.11.004.
[14] C. Sampaio Descovi, A. Carlos Zuffo, S. Mohammadizadeh, L. F. Murillo Bermúdez, and D. Alfonso Sierra, “Utilizing Long Short-Term Memory (Lstm) Networks for River Flow Prediction in the Brazilian Pantanal Basin,” Holos, vol. 5, no. 39, pp. 1–16, 2023, doi: 10.15628/holos.2023.16315.
[15] L. Micol Policarpo et al., “Machine learning through the lens of e-commerce initiatives: An up-to-date systematic literature review,” Comput. Sci. Rev., vol. 41, p. 100414, 2021, doi: https://doi.org/10.1016/j.cosrev.2021.100414.
[16] L. E. Lwakatare, A. Raj, I. Crnkovic, J. Bosch, and H. H. Olsson, “Large-scale machine learning systems in real-world industrial settings: A review of challenges and solutions,” Inf. Softw. Technol., vol. 127, p. 106368, 2020, doi: https://doi.org/10.1016/j.infsof.2020.106368.
[17] R. Wang, G. Fu, B. Fu, and M. Wang, “Deep & cross network for ad click predictions,” 2017 AdKDD TargetAd - conjunction with 23rd ACM SIGKDD Conf. Knowl. Discov. Data Mining, KDD 2017, 2017, doi: 10.1145/3124749.3124754.
[18] J. Ren, J. Zhang, and J. Liang, “Feature engineering of click-through-rate prediction for advertising,” in Lecture Notes in Electrical Engineering, Q. Liang, X. Liu, Z. Na, W. Wang, J. Mu, and B. Zhang, Eds., Singapore: Springer Singapore, 2020, pp. 204–211. doi: 10.1007/978-981-13-6508-9_26.
[19] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. “ O’Reilly Media, Inc.,” 2022.
[20] P. Dumka et al., “Development and implementation of a Python functions for automated chemical reaction balancing,” Indones. J. Electr. Eng. Comput. Sci., vol. 34, no. 3, pp. 1557–1565, 2024, doi: 10.11591/ijeecs.v34.i3.pp1557-1565.
[21] W. McKinney, Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. “ O’Reilly Media, Inc.,” 2012.
[22] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array: A structure for efficient numerical computation,” Comput. Sci. Eng., vol. 13, no. 2, pp. 22–30, 2011, doi: 10.1109/MCSE.2011.37.
[23] Y. Raghuvanshi, D. R. Mishra, and P. Dumka, “Understanding Sets with the help of Python 1,” Int. J. Nov. Res. Dev., vol. 7, no. 10, pp. 136–142, 2022.
[24] A. R. Joshi, A. Deo, A. Parashar, D. R. Mishra, and P. Dumka, “Modelling Steam Power Cycle using Python,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 9, no. 1, pp. 152–162, 2023.
[25] P. Dumka, N. Samaiya, S. Gandhi, and D. R. Mishra, “Modelling of Hardy Cross Method for Pipe Networks,” Int. J. Mech. Eng., vol. 10, no. 2, pp. 1–8, 2023.
[26] J. W. B. Lin, “Why python is the next wave in earth sciences computing,” Bull. Am. Meteorol. Soc., vol. 93, no. 12, pp. 1823–1824, 2012, doi: 10.1175/BAMS-D-12-00148.1.
[27] D. Nofriansyah and H. Freizello, “Python Application: Visual Approach of Hopfield Discrete Method for Hiragana Images Recognition,” Bull. Electr. Eng. Informatics, vol. 7, no. 4, pp. 609-614, 2018, doi: 10.11591/eei.v7i4.691.
[28] M. F. Sanner, “Python: A programming language for software integration and development,” J. Mol. Graph. Model., vol. 17, no. 1, pp. 57–61, 1999.
[29] P. S. Pawar, D. R. Mishra, and P. Dumka, “Solving First Order Ordinary Differential Equations using Least Square Method?: A comparative study,” Int. J. Innov. Sci. Res. Technol., vol. 7, no. 3, pp. 857–864, 2022.
[30] P. Dumka, R. Dumka, and D. R. Mishra, Numerical Methods Using Python. BlueRose, 2022.
[31] P. Dumka, R. Chauhan, and D. R. Mishra, “Experimental and theoretical evaluation of a conventional solar still augmented with jute covered plastic balls,” J. Energy Storage, vol. 32, no. June, p. 101874, 2020, doi: 10.1016/j.est.2020.101874.
[32] R. Chauhan, P. Dumka, and D. R. Mishra, “Modelling conventional and solar earth still by using the LM algorithm-based artificial neural network,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 1389–1396, 2022, doi: 10.1080/01430750.2019.1707113.
[33] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating learning algorithms,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 3, pp. 299–310, 2005, doi: 10.1109/TKDE.2005.50.
[34] S. Imambi, K. B. Prakash, and G. R. Kanagachidambaresan, “PyTorch,” in EAI/Springer Innovations in Communication and Computing, K. B. Prakash and G. R. Kanagachidambaresan, Eds., Cham: Springer International Publishing, 2021, pp. 87–104. doi: 10.1007/978-3-030-57077-4_10.
[35] V. Singh, B. Nanavati, A. K. Kar, and A. Gupta, “How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach,” Inf. Syst. Front., vol. 25, no. 4, pp. 1621–1638, 2023, doi: 10.1007/s10796-022-10314-0.
[36] C. Yu, Z. Zhang, C. Lin, and Y. J. Wu, “Can data-driven precision marketing promote user ad clicks? Evidence from advertising in WeChat moments,” Ind. Mark. Manag., vol. 90, no. November 2018, pp. 481–492, 2020, doi: 10.1016/j.indmarman.2019.05.001.
[37] Z. Gharibshah, X. Zhu, A. Hainline, and M. Conway, “Deep Learning for User Interest and Response Prediction in Online Display Advertising,” Data Sci. Eng., vol. 5, no. 1, pp. 12–26, 2020, doi: 10.1007/s41019-019-00115-y.
[38] A. A. T. Fernandes, D. B. F. Filho, E. C. da Rocha, and W. da Silva Nascimento, “Read this paper if you want to learn logistic regression,” Rev. Sociol. e Polit., vol. 28, no. 74, pp. 1/1-19/19, 2020, doi: 10.1590/1678-987320287406EN.
[39] E. Pekel, “Estimation of soil moisture using decision tree regression,” Theor. Appl. Climatol., vol. 139, no. 3–4, pp. 1111–1119, 2020, doi: 10.1007/s00704-019-03048-8.
[40] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, p. 6, 2020, doi: 10.1186/s12864-019-6413-7.
[41] S. Albahli, “Efficient hyperparameter tuning for predicting student performance with Bayesian optimization,” Multimed. Tools Appl., vol. 83, no. 17, pp. 52711–52735, 2024, doi: 10.1007/s11042-023-17525-w.
[42] T. S. Biró and Z. Néda, “Gintropy: Gini index based generalization of entropy,” Entropy, vol. 22, no. 8, pp. 1–13, 2020, doi: 10.3390/E22080879.
[43] S. Ghosal, S. Sengupta, M. Majumder, and B. Sinha, “Linear Regression Analysis to predict the number of deaths in India due to SARS-CoV-2 at 6 weeks from day 0 (100 cases - March 14th 2020),” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 4, pp. 311–315, 2020, doi: https://doi.org/10.1016/j.dsx.2020.03.017.
[44] M. Saarela and S. Jauhiainen, “Comparison of feature importance measures as explanations for classification models,” SN Appl. Sci., vol. 3, no. 2, p. 272, 2021, doi: 10.1007/s42452-021-04148-9.
[45] S. Nusinovici et al., “Logistic regression was as good as machine learning for predicting major chronic diseases,” J. Clin. Epidemiol., vol. 122, pp. 56–69, 2020, doi: https://doi.org/10.1016/j.jclinepi.2020.03.002.
[46] L. Zhao, S. Lee, and S. P. Jeong, “Decision tree application to classification problems with boosting algorithm,” Electron., vol. 10, no. 16, pp. 1–13, 2021, doi: 10.3390/electronics10161903.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation