Full Paper View Go Back
Facial Expression Recognition Using Static Facial Images
G.Sowmiya 1 , V. Kumutha2
- Department of Computer Science, Sri Krishna Arts and Science College, Coimbatore, India.
- Department of Computer Science, Sri Krishna Arts and Science College, Coimbatore, India.
Section:Research Paper, Product Type: Isroset-Journal
Vol.6 ,
Issue.2 , pp.72-75, Apr-2018
CrossRef-DOI: https://doi.org/10.26438/ijsrcse/v6i2.7275
Online published on Apr 30, 2018
Copyright © G.Sowmiya, V. Kumutha . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: G.Sowmiya, V. Kumutha, “Facial Expression Recognition Using Static Facial Images,” International Journal of Scientific Research in Computer Science and Engineering, Vol.6, Issue.2, pp.72-75, 2018.
MLA Style Citation: G.Sowmiya, V. Kumutha "Facial Expression Recognition Using Static Facial Images." International Journal of Scientific Research in Computer Science and Engineering 6.2 (2018): 72-75.
APA Style Citation: G.Sowmiya, V. Kumutha, (2018). Facial Expression Recognition Using Static Facial Images. International Journal of Scientific Research in Computer Science and Engineering, 6(2), 72-75.
BibTex Style Citation:
@article{Kumutha_2018,
author = {G.Sowmiya, V. Kumutha},
title = {Facial Expression Recognition Using Static Facial Images},
journal = {International Journal of Scientific Research in Computer Science and Engineering},
issue_date = {4 2018},
volume = {6},
Issue = {2},
month = {4},
year = {2018},
issn = {2347-2693},
pages = {72-75},
url = {https://www.isroset.org/journal/IJSRCSE/full_paper_view.php?paper_id=610},
doi = {https://doi.org/10.26438/ijcse/v6i2.7275}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i2.7275}
UR - https://www.isroset.org/journal/IJSRCSE/full_paper_view.php?paper_id=610
TI - Facial Expression Recognition Using Static Facial Images
T2 - International Journal of Scientific Research in Computer Science and Engineering
AU - G.Sowmiya, V. Kumutha
PY - 2018
DA - 2018/04/30
PB - IJCSE, Indore, INDIA
SP - 72-75
IS - 2
VL - 6
SN - 2347-2693
ER -
Abstract :
Abstract Delicate concerns about the treatment of individuals during interviews and interrogations have stimulated efforts to develop "non-intrusive" technologies for rapidly assessing the credibility of statements by individuals in a variety of sensitive environments. Methods or processes that have the potential to exactly focus investigative resources will advance operational excellence and improve investigative capabilities. Facial expressions have the capacity to communicate emotion and regulate interpersonal behavior. Facial Expression Recognition -FER has been dramatically developed in recent years, especially machine learning, Image processing and human cognition. For this reason, the bang and possible usage of automatic facial expression recognition system have been mounting in a broad range of applications, including human-computer interaction, robot control and driver state observation. This paper proposes an automatic facial expression recognition using static facial images, capable of distinctive the four universal emotions: neutral, happiness, sadness and surprise. It is designed to be person independent and tailored only for static images.
Key-Words / Index Term :
Keywords Facial Expression recognition, eye and lip detection, Bezier curve, emotion, RGB color, binary image pixel.
References :
[1] Noor A. Ibraheem, Rafiqul Z. Khan, Mokhtar M. Hasan. Comparative Study of Skin Color based Segmentation Techniques. August 2013 –IJAIS.
[2] Saket S Kulkarni, Narender P Reddy, and SI Hariharan. Facial expression (mood) recognition from facial images using committee neural networks. August 2009-Biomed central.
[3] Andreea Pascu, Prof. Ross King. Facial expression recognition system, April 2015.
[4] Ce Zhan, Wanqing Li, Philip Ogunbona, and Farzad Safaei. A Real-Time Facial Expression Recognition System for Online Games. Hindawi-2008.
[5] Claude C. Chibelushi, Fabrice Bourel. Facial Expression Recognition: A Brief Tutorial Overview.
[6] V.Sathya, T.chakravarthy. Facial Expression Recognition System Performance Using Various Database. Sep.- Oct. 2017- IOSR-JCE.
[7] C.Karuna Sharma, T.Aswini, A.Vinodhini, V.Selvi. Accurate Emotion Detection of Digital Images Using Bezier Curves. IJARCET-3, March 2015.
[8] Ratri Dwi Atmaja, Muhammad Ary Murti, Junartho Halomoan, Fiky Yosef Suratman. An Image Processing Method to Convert RGB Image into Binary. IJEECS, August 2016, pp. 377 - 382.
[9] Manish Dixit and Sanjay Silakari. Face Recognition Using Approximated Bezier Curve and Supervised Learning Approach. IJMUE-2015, pp.311-24.
[10] P. Rai and M. Dixit, “Smile detection Via Bezier Curve Of Mouth Interest Points”, International Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, no. 7, (2013) July, pp. 802-806.
[11] Ms. K.T.Chalekar, Prof T. Yengantiwar. REVIEW PAPER ON IMAGE CONTRAST ENHANCEMENT TECHNIQUES. (IJARCET) Volume 3 Issue 3, March 2014.
[12] S. Kolkur, D. Kalbande, P. Shimpi, C. Bapat, and J. Jatakia. Human Skin Detection Using RGB, HSV and YCbCr Color Models.
[13] Prof. Rahul, Mangesh, Viplove Wahane, Akshay Murkhe. Analysis of Emotion Recognition using Facial Expressions, using Bezier curve. IJLTET.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.