References
[1]. Weibo Cai; Ting Gao; et. al., Application of gold nanoparticles in cancer nanotechnology, Nanotechnology Sciences and Applications, I, 17-32, 2018.
[2]. Singh, P.; Kim, Y.J.; Singh, H.; Ahn, S.; Castro-Aceituno, V.; Yang, D.C., In situ preparation of water soluble ginsenoside Rh2-entrapped bovine serum albumin nanoparticles: In vitrocytocompatibility studies, Int.J.Nanomed, 12, 4073-4084, 2017.
[3]. Singh, P; Singh, H; Castro-Aceituno, V.; Ahn, S.; Kim, Y.J.; Farh, M.E.-A.; Yang, D.C., Engineering of mesoporous silica nanoparticles for release of ginsenoside CK and Rh2 to enhanced their anticancer and anti-inflammatory efficacy: In vitro studies, J. Nanopart Res.,19, 257, 2017.
[4]. Singh, P.; Kim, Y.J.; Singh, H.; Ahn, S.; Castro-Aceituno, V.; Yang, D.C., In situ preparation of water-soluble ginsenoside Rh2-entrapped bovine serum albumin nanoparticles: In vitrocytocompatibility studies, Int.J. Nanomed, 12, 4073-4084, 2017.
[5]. Cai W, Chen K, Li ZB, et al., Dual-function probe for PET and near-infrared florescence imaging of tumor vasculature, J NuclMed, a, 48:1862-70, 2007.
[6]. Weibo Cai, Ting Gao, Hao Hong, Jiangtao Sun., Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology Science and Application, I, 17-32, 2008.
[7]. Grodzinski P, Silver M, Molnar LK., Nanotechnology for cancer diagnostics: promises and challenges, Expert Rev Mol Diag, 6:307-18, 2006.
[8]. Sahoo SK, Parveen S, Panda, The present and future of nanotechnology in human health care, Nanomedicine, 3:20-31, 2007.
[9]. Cai W, Chen X, Nanoplatforms for targeted molecular imaging in living subjects, small, 3:1840-54, 2007.
[10]. Cai W, Chen X, Multimodality imaging of tumor angiogenesis, J Nucl Med, 49:113S-28S, 2008.
[11]. Deb S, Patra HK, Lahiri P, Dasgupta AK, Chakrabarti K, Chaudhuri U, Multistability in platelets and their response to gold nanoparticles, Nanomed: Nanotechnol Biol Med, 7: 376-384, 2011.
[12]. AK Khan, R Rashid, G Murtaza, A Zahra, Gold Nanoparticles: Synthesis and Application in Drug Delivery, Tropical Journal of Pharmaceutical Research, 13 (7): 1169-1177, 2014.
[13]. Horton MA, Khan A, Medical nanotechnology in the UK: a perspective from the London Centre for Nanotechnology, Nanomedicine, 2:42-8, 2006.
[14]. Mocellin S, Nitti D, TNF and Cancer: the two sides of the coin, Front Biosci, 13: 2774-83, 2008.
[15]. Visaria RK, Griffin RJ, Williams BW, et al, Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery, Mol Cancer Ther,5:1014-20, 2006.
[16]. Paciotti GF, Myer L, Weinreich D, et al, a novel nanoparticle vector for tumor directed drug delivery, Drug Deliv,11:169-83, 2004.
[17]. Chen Y.H., Tsai C.Y., Huang P.Y., Chang M.Y., Cheng P.C., Chou C.H., Chen D.H., Wang C.R., Shiau A.L., Wu C.L., Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model, Mol. Pharm.,4, 713-722, 2007.
[18]. Wang F, Wang Y.C., Dou S, Xiong M.H., Sun T.M., Wang J., Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells, ACS Nano, 5, 3679-3692, 2011.
[19]. Firer M.A., Laptev R, Kasatkin L, Trombka D, Specific destruction of hydridoma cells by antigen-toxin conjugates demonstrate an efficient strategy for targeted drug therapy in leukemias of the B cell lineage, Leuk., Lymphoma, 44, 681-689, 2003.
[20]. Gellerman G., Baskin S., Galia L., Gilad Y., Firer M.A., Drug resistance to chlorambucil in murine B-cell lekemic cells is overcome by its conjugation to a targeting peptide, Anticancer Drugs, 24, 112-119, 2013.
[21]. Glad Y., Firer M.A, Rozovsky A., Ragozin E., Redko B., Albeck A., Gellerman G., “Switch off/ switch/on” regulation of drug cytotoxicity by conjugation to a cell targeting peptide, Eur.J. Med. Chem., 85, 139-146, 2014.
[22]. Gilad Y., Noy E., Senderowitz H, Albeck A., Firer M.A., Gellerman G., Dual-drug RGD conjugates provide enhanced cytotoxicity to melanoma and non-small lung cancer cells, Biopolymers 106, 160-171, 2015.
[23]. Chen Y.H., Tsai C.Y., Huang P.Y., Chang M.Y., Cheng P.C., Chou C.H., Chen D.H., Wang C.R., Shiau A.L., Wu C.L., Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model, Mol. Pharm.,4, 713-722, 2007.
[24]. Wang F., Wang Y.C., Dou S., Xiong M.H., Sun T.M., Wang J., Doxorubic in-tethered responsive gold nanoparticles facilitate intercellular drug delivery for overcoming multiple resistance in cancer cells, ACS Nano, 5, 3679-3692, 2011.
[25]. Brown S.D., Nativo P., Smith J.A., Stirling D., Edwards P.R., Venugopal B., Flint D.J., Plumb J.A., Graham D., Wheate N.J., Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin, J.Am.Chem.Soc., 132, 4678-4684, 2010.
[26]. Dixit S., Novak T., Miller K., Zhu Y., Kenney M.E., Broome A.M., Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors, Nanoscale, 7, 1782-1790, 2015.
[27]. Park H., Tsutsumi H., Mihara H., Cell-selective intracellular drug delivery using doxorubicin and alpha-helical peptides conjugated to gold nanoparticles, Biomaterials, 35, 3480-3487, 2014.
[28]. Cheng J., Gu Y.J., Cheng S.H., Wong W.T., Surface Functionalized Gold Nanoparticles for Drug Delivery, J.Biomed.Nanotechnol, 9, 1362-1369, 2013.
[29]. Pandey S., Mewada A., Thakur M., Shah R., Oza G., Sharon M., Biogenic gold nanoparticles as flotillas to fire berberine hydrochloride using folic acid as molecular road map, Mater. Sci. Eng. Mater. Biol. Appl., 33, 3716-3722, 2013.
[30]. Prabaharan M., Grailer J.J., Pilla S., Steeber D.A., Gong S., Gold nanoparticles with a monolayer of doxorubicin-conjuagted amphiphilic block copolymer for tumor-targeted drug delivery, Biomaterials, 30, 6065-6075, 2009.
[31]. Ramalingam V., Varunkumar K., Ravikumar V., Rajaram R., Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer, Sci. Rep., 8, 3815, 2018.
[32]. Farooq M.U., Novosad V., Rozhkova E.A., Wali H., Ali A., Fateh A.A., Neogi P.B., Neogi A., Wang Z., Gold nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells, Sci. Rep., 8, 2907, 2018.
[33]. Zhu D.M., Xie W., Xiao Y.S., Suo M., Zan M.H., Liao Q.Q., Hu X.J., Chen L.B., Chen B., Wu W.T., et. al., Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy, Nanotechnology, 29, 084002, 2018.
[34]. Sun X., Zhang G., Keynton R.S., O ‘Toole’ M.G., Patel D., Gobin A.M., Enhanced drug delivery via hyperthermal membrane disruption using targeted gold nanoparticles with PEGylated Protein-G as a cofactor, Nanomed: Nanotechnol Bio Med., 9: 1214-1222, 2013.
[35]. Heidar Z., Sariri R., Salouti M., Gold nanorods-bombesin conjugate as a potential targeted imaging agent for detection of breast cancer, J. Photochem Photobiol B: Biol, 130: 40-46, 2014.
[36]. Mendoza K.C., McLane V.D., Kim S., Griffin J.D., Invitro application of gold nanoparticles in live neurons for phnotypical classification, connectivity assessment, and electrophysiological recording, Brain Res., 1325: 19-27, 2010.
[37]. Chen K-S., Hung T-S., Wu H-M., Wu J-Y., Lin M-T., Feng C-K., Preparation of thermosensitive gold nanoparticles by plasma pretreatment and UV grafted polymerization, Thin Solid Films, 518: 7557-7562, 2010.
[38]. Deb S., Patra H.K., Lahiri P., Dasgupta A.K., Chakrabarti K., Chaudhuri U., Multistability in platelets and their response to gold nanoparticles, Nanomed: Nanotechnol Bio Med., 7: 376-384, 2011.
[39]. Ganesh Kumar M., Sastry T.P., Sathish Kumar M., Dinesh M.G., Kannappan S., Suguna L., Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: Preparation, characterization and toxicity studies in zebrafish embryo model, Mater Res Bull., 47: 2113-2119, 2012.
[40]. Murawala P., Tirmale A., Shiras A., Prasad B.L.V., In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells, Master Sci Engineer C., 34: 158-167, 2014.
[41]. Giijohann D.A., Seferos D.S., Daniel W.L., Massich M.D., Patel P.C., Mirkin C.A., Gold nanoparticles for biology and medicine, Angewandte Chem., 49: 3280-3294, 2010.
[42]. Lan M-Y, Hsu Y-B., Hsu C-H., Ho C-Y., Lin J-C., Lee S-W., Induction of apoptosis by high-dose gold nanoparticles in nasopharyngeal carcinoma cells, Auris Nasus Larynx, 40: 563-568, 2013.
[43]. Namazi H., Fard A.M.P., Preparation of gold nanoparticles in the presence of citric acid-based dendrimers containing periphery hydroxyl groups, Mater Chem Physic, 129: 189-194, 2011.
[44]. Tarnawski R., Ulbricht M., Amphiphilic gold nanoparticles: Syntheis, characterization and adsorption to PEGylated polymer surfaces, Colloid Surfac A: Physicochem Engineer Aspects, 374: 13-21, 2011.
[45]. Nalawade P., Mukherjee T., Kapoor S., High-yield synthesis of multispiked gold nanoparticles: Characterization and catalytic reactions, Colloid Surfac A: Physicochem Engineer Aspects, 396: 336-340, 2012.
[46]. Feng Z.V., Gunsolus I.L., Qiu T.A., Hurley K.R., Nyberg L.H., Few H., Johnson K.P., Vartanian A.M., Jacob L.M., Lohse S.E., et. al., Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria, Chem. Sci., 6, 5186-5196, 2015.
[47]. Cho T.J., Mac Cusoie R.I., Gigault J., Gorham J.M., Elliott J.K., Hackley V.A., Highly stable positively charged dendron-encapsulated gold nanoparticles, Langmuir, 30, 3883-3893, 2014.
[48]. Schaeublin N.M., Braydich-Stolle L.K., Schrand A.M., Miller J.M., Hutchison J., Schlager J.J., Hussain S.M., Surface charge of gold nanoparticles mediates mechanism of toxicity, Nanoscale, 3, 410-420, 2011.
[49]. Hanna S.K., Montoro Bustos A.R., Peterson A.W., Reipa V., Scanlan L.D., Hosbas Coskun S., Cho T.J., Johnson M.E., Hackley V.A., Nelson B.C., et. al., Agglomeration of Escherichia coli with Positively Charged Nanoparticles Can Lead to Artifacts in a Standard Caenorhabditis elegans Toxicity Assay, Environ. Sci. Technol., 52, 5968-5978, 2018.
[50]. Cao W., Xu K., Ji L., Tang B., Effect of gold nanoparticles on glutathione depletion-induced hydrogen peroxide generation and apoptosis in HL7702 cells, Toxicol Lett., 205, 86-95, 2011.
[51]. Rosli N.S.B., Rahman A.A., Aziz A.A., Shamsuddin S., Determining the size and concentration dependence of gold nanoparticles in vitro cytotoxicity (IC50) test using WST-1 assay, AIP Conf. Proc., 1657, 2015.
[52]. Connor E.E., Mwamuka J., Gole A., Murphy C.J., Wyatt M.D., Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, small, 1, 352-327, 2015.
[53]. Zhang X.D., Wu D., Shen X., Chen J., Sun Y.M., Liu P.X., Liang X., Size-dependent radiosenstization of PEG-coated gold nanoparticles for cancer radiation therapy, Biomaterials, 33, 6408-6419, 2012.
[54]. Li X., Hu Z., Ma J., Wang X., Zhang Y., Wang W., Yuan Z., The systemic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles, Colloids Surf. B Biointerfaces, 167, 260-266, 2018.
[55]. Dickerson E.B., Dreaden E.C., Huang X., El-Sayed I.H., Chu H., Pushpanketh S., McDonald J.F., El-Sayed M.A., Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice, Cancer Lett., 269, 57-66, 2008.
[56]. Bobo D., Robinson K.J., Islam J., Thurecht K.J., Corrie S.R., Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date, Pharm. Res., 33, 2373-2387, 2016.
[57]. Tomic S., Ethokic J., Vasilijic S., Ogrinc N., Rudolf R., Pelicon P., Vucevic D., Milosavljevic P., Jankovic S., Anzel I., et. al., Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro, PLoS ONE, 9, e96584, 2014.
[58]. Huhn D., Kantner K., Geidel C., Brandholt S., De Cock I., Soenen S.J., Rivera Gil P., M ontenegro J.M., Braeckmans K., Mullen K., et. al., Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge, ACS Nano, 7, 3253-3263, 2013.
[59]. Deng J., Yao M., Gao C., Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers, Acta Biomater, 53, 610-618, 2017.
[60]. Libutti S.K., Paciotti G.F., Byrnes A.A., Alexander H.R. Jr., Gannon W.E., Walker M., Seidel G.D., Yuldasheva N., Tamarkin L., Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rh TNF nanomedicine, Clin. Cancer Res., 16, 6139-6149, 2010.
[61]. Libutti S.K., Paciotti G.F., Byrnes A.A., Alexander H.R. Jr., Gannon W.E., Walker M., Seidel G.D., Yuldasheva N., Tamarkin L., Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rh TNF ananomedicine, Clin. Cancer Res., 16, 6139-6149, 2010.
[62]. Ali M.R., Rahman M.A., Wu Y., Han T., Peng X., Mackey M.A., Wang D., Shin H.J., Chen Z.G., Xiao H., et. al., Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice, Proc. Natl. Acad. Sci. USA., 114, E3110-E3118, 2017.
[63]. Ansemo A.C., Samir M., Nanoparticles in the clinic, Bioeng. Transl. Med., 1, 10-29, 2016.
[64]. Priyanka Singh, Santosh Pandit, V.R.S.S. Mokkapati, Abhroop Garg, Vaishnavi RaviKumar, Ivan Mijakovic, Gold Nanoparticles in Diagnostic and Therapeutics for Human Cancer, International Journal of Molecular Sciences, 19, 1979, 2018.
[65]. Guo Q., Guo Q., Yuan J., Zeng J., Biosynthesis of gold nanoparticles using a kind of flavonol: Dihydromyricetin Colloids and Surface A: Physiocochemical and Engineering Aspects, 441: 127-132, 2014.
[66]. Lan M-Y., Hsu Y-B., Hsu C-H., Ho C-Y., Lin J-C., Lee S-W., Induction of apoptosis by high-dose gold nanoparticles in nasopharyngeal carcinoma cells, Auris Nasus Larynx, 40: 563-568, 2013.
[67]. Hartono D., Hody, Yang K.L., Yung L.Y., The effect of cholesterol on protein-coated gold nanoparticle binding to liquid crystal-supported models of cell membranes, Biomater, 31: 3008-3015, 2010.
[68]. Mishra A., Tripathy S.K., Yun S-I., Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia Coli and Staphylococcus aureus, Process Biochem, 47: 701-711, 2012.
[69]. Chithrani D.B., Dunne M., Stewart J., Allen C., Jaffray D.A., Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier, Nanomed: Nanotechnol Bio. Med., 6: 161-169, 2010.
[70]. F.K. Alanazi, A.A. Radwan, I.A. Alsarra, Biopharmaceutical applications of nanogold, Saudi Pharm J, 18: 179-193, 2010.
[71]. Di Guglielmo C., Lopez D.R., De Lapuente J., Mallafre J.M., Suarez M.B., Embryotoxicity of cobalt ferrite and gold nanoparticles: a first in vitro approach, Reproduct Toxicol, 30: 271-276, 2010.
[72]. Tedesco S., Doyle H., Blasco J., Redmond G., Sheehan D., Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis, Aquatic Toxicol, 100: 178-186, 2010.
[73]. Kojima C., Umeda Y., Harada A., Kono K., Preparation of near-infrared light absorbing gold nanoparticles using polyethylene glycol-attached dendrimers, Colloid Surfac B., Biointerfac, 81: 648-651, 2010.
[74]. Lee K., Lee H., Bae K.H., Park T.G., heparin immobilized gold nanoparticles for targeted detection and apoptotic death of metastatic cancer cells, Biomater, 31: 6530-6536, 2010.
[75]. Murawala P., Tirmale A., Shiras A., Prasad B.L.V., In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells, Mater Sci. Engineer C., 34: 158-167, 2014.