Full Paper View Go Back

Review of Climate Change Assessment using Solar Radiation Data from Satellite Remote Sensing

Thomas U. Omali1

  1. National Biotechnology Development Agency (NABDA), Nigeria.

Section:Review Paper, Product Type: Journal-Paper
Vol.9 , Issue.1 , pp.52-57, Jan-2023


Online published on Jan 31, 2023


Copyright © Thomas U. Omali . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Thomas U. Omali, “Review of Climate Change Assessment using Solar Radiation Data from Satellite Remote Sensing,” International Journal of Scientific Research in Multidisciplinary Studies , Vol.9, Issue.1, pp.52-57, 2023.

MLA Style Citation: Thomas U. Omali "Review of Climate Change Assessment using Solar Radiation Data from Satellite Remote Sensing." International Journal of Scientific Research in Multidisciplinary Studies 9.1 (2023): 52-57.

APA Style Citation: Thomas U. Omali, (2023). Review of Climate Change Assessment using Solar Radiation Data from Satellite Remote Sensing. International Journal of Scientific Research in Multidisciplinary Studies , 9(1), 52-57.

BibTex Style Citation:
@article{Omali_2023,
author = {Thomas U. Omali},
title = {Review of Climate Change Assessment using Solar Radiation Data from Satellite Remote Sensing},
journal = {International Journal of Scientific Research in Multidisciplinary Studies },
issue_date = {1 2023},
volume = {9},
Issue = {1},
month = {1},
year = {2023},
issn = {2347-2693},
pages = {52-57},
url = {https://www.isroset.org/journal/IJSRMS/full_paper_view.php?paper_id=3041},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRMS/full_paper_view.php?paper_id=3041
TI - Review of Climate Change Assessment using Solar Radiation Data from Satellite Remote Sensing
T2 - International Journal of Scientific Research in Multidisciplinary Studies
AU - Thomas U. Omali
PY - 2023
DA - 2023/01/31
PB - IJCSE, Indore, INDIA
SP - 52-57
IS - 1
VL - 9
SN - 2347-2693
ER -

183 Views    196 Downloads    57 Downloads
  
  

Abstract :
Climate fundamentally affects man and his environment regardless of the richness and technical know-how of contemporary societies. For this reason, climate change and its effects on the ecosystem have become contemporary global problems. In the course of scientific study about climate change, it has become obvious that climate change holds substantial risks for people, the natural resources and the ecosystems on which they depend. Hence, they usually result in increased demand on society requiring frequent monitoring of the climate variables. Accurate observations of the climate variables are feasible by various means such as ground-based methods, reanalysis tools, and satellite-based systems. Among the available methods, the application of satellite-based data is more sufficient for multi-scale and instant assessment with a time-based revisit constantly with the earth’s processes. This study is specifically concerned with satellite–enhanced observations of solar radiation for monitoring climate change. Electronic databases were accessed to gather papers that are available in the English language over ten years from 2013 to 2022. Subsequently, 805 peer-reviewed articles were gathered out of which 66 eventually met the review conditions. The suitable papers were categorized and discussed based on their importance on the measurements of radiations. Summarily, this study shows that remote sensing is an effective tool for understanding solar radiation, which is of great significance in monitoring climate change.

Key-Words / Index Term :
Albedo, climatology, earth surface, energy budget, irradiance, radiative fluxes, ToA

References :
[1] S.M. Hsiang, M. Burke, E. Miguel, “Quantifying the Influence of Climate on Human Conflict”, Sci., Vol.341, p.1235367, 2013.
[2] M. Burke, S.M. Hsiang, E. Miguel, “Global Non–linear Effect of Temperature on Economic Production”, Nature, Vol.527, p.235, 2015.
[3] S. Ahmed, “Assessment of Urban Heat Islands and Impact of Climate Change on Socio-Economic Activities over Suez Governorate Using Remote Sensing and GIS Techniques”, The Egyptian J. Remote Sens. Space Sci., Vol.21, p.15, 2018.
[4] H.L. Berry, T.D. Waite, K.B. Dear, A.G. Capon, V. Murray, “The Case for Systems Thinking about climate change and Mental Health”, Nat. Clim. Chang., Vol.8, p.282, 2018.
[5] A. Cunsolo, N.R. Ellis, “Ecological Grief as a Mental Health Response to Climate Change-related Loss”, Nat. Clim. Chang., Vol.8, p.275, 2018.
[6] J.A. Schultz, M. Hartmann, S. Heinemann, J. Janke, C. Jürgens, D. Oertel, …, A. Rienow, “DIEGO: A Multispectral Thermal Mission for Earth Observation on the International Space Station”, Euro. J. Remote Sens., Vol.53, p.28., 2020
[7] S. Bojinski, M. Verstraete, T.C. Peterson, C. Richter, A. Simmons, M. Zemp, “The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy”, Bull. American Meteorol. Soc., Vol.95, p.1431, 2014.
[8] G. Giuliani, S. Nativi, A. Obregon, M. Beniston. A. Lehmann, "Spatially Enabling the global framework for Climate Services: Reviewing Geospatial Solutions to efficiently share and Integrate Climate Data & Information”, Clim. Services, Vol.8, p.44, 2017.
[9] N. Pettorelli, M. Wegmann, A. Skidmore, S. Mücher, T.P. Dawson, M. Fernandez, …, G.N. Geller, “Framing the Concept of Satellite Remote Sensing Essential Biodiversity Variables: Challenges and Future Directions”, Remote Sens. Ecol. Conserv., Vol.2, p.122, 2016.
[10] L. Naitza, P. Cristofanelli, A. Marinoni, F. Calzolari, F. Roccato, M. Busetto, “Increasing the Maturity of Measurements of Essential Climate Variables (ECVs) at Italian Atmospheric WMO/GAW Observatories by Implementing Automated Data Elaboration Chains”, Computers and Geosci., Vol.137, p.104432, 2020.
[11] Y. Zeng, Z. Su, R. Van der Velde, L. Wang, K. Xu, X. Wang, J. Wen, “Blending Satellite Observed, Model–simulated, and in–situ Measured Soil Moisture over Tibetan plateau”, Remote Sens., Vol.8, p.268, 2016.
[12] M.A. Okono, E.P. Agbo, B.J. Ekah, U.J. Ekah, E.B. Ettah, C.O. Edet, “Statistical Analysis and distribution of Global Solar Radiation and Temperature over Southern Nigeria”, J. Nig. Soc. Phys. Sci., Vol.4, p.588, 2022.
[13] F.O. Awedaa, J.A. Akinpelua, T.K. Samson, M. Sannic, B S. Olatinwo, “Modeling and Forecasting Selected Meteorological Parameters for the Environmental Awareness in Sub-Sahel West Africa Stations”, J. Nig. Soc. Phys. Sci., Vol.4, p.820, 2022.
[14] G.O. Odekina, A.F. Adedotun, O.F. Imaga, ”Modeling and Forecasting the Third Wave of Covid-19 Incidence Rate in Nigeria using Vector Autoregressive Model Approach”, J. Nig. Soc. Phys. Sci., Vol.4, p.117, 2022.
[15] N.D. Umara, A.I. Abdullahi, “Application of Remote Sensing and Geoinformatics Techniques in Erosion Mapping and Groundwater Management in the River Amba watershed, Central Nigeria”, J. Nig. Soc. Phys. Sci., Vol.3, p.59, 2021.
[16] J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, …, R. Dickinson, “The Role of Satellite Remote Sensing in Climate Change Studies”, Nat. Clim. Chang., Vol.3, p.875, 2013. doi: 10.1038/nclimate1908.
[17] L. Ke, X. Ding, W. Li, B. Qiu, “Remote sensing of Glacier Change in the Central Qinghai–Tibet Plateau and the Relationship with Changing Climate”, Remote Sens., Vol.9, p.114, 2017.
[18] E.G. Wang, E. Zhou, H.A.J, Russell, “Estimating Snow Mass and Peak River Flows for the Mackenzie River Basin Using GRACE Satellite Observations”, Remote Sens., Vol.9, p.256, 2017.
[19] S.A. Moiz, A.N. M. Alahmadi, A.J Aljohani, “ Design of Silicon Nanowire Array for PEDOT: PSS-Silicon Nanowire-Based Hybrid Solar Cell”, Energies, Vol.13, p.3797, 2020. doi:10.3390/en13153797
[20] D.M. Dissawa, G.M. Godaliyadda, M.P. Ekanayake, J.B. Ekanayake, “Cross-Correlation Based Cloud Motion Estimation for Short-Term Solar Irradiation Predictions,” 2017 IEEE International Conference on Industrial and Information Systems, 2017.
[21] J. Awasthi, K.N. Poudyal, “Estimation of Global Solar Radiation Using Empirical Model on Meteorological Parameters at Simara Airport, Bara, Nepal, Journal of the Institute of Engineering, Vol.14, Issue.1, pp.143-150, 2018.
[22] R. Urracaa, A.M. Gracia-Amillob, T. Huldb, F. J. Martinez-de-Pisona, J. Trentmanne, A. V. Lindforsf, A. Riiheläf, A. Sanz-Garcia. “Quality Control of Global Solar Radiation Data with Satellite-based Products”, Solar Energy Vol.158, pp.49–62, 2017.
[23] M.E.D. Chaves, M.C.A. Picoli, L.D. Sanches, “Recent Applications of Landsat 8/OLI and Sentinel–2/MSI for Land use and Land cover Mapping: A Systematic Review”, Remote Sens., Vol.12, p.3062, 2020.
[24] M.K. Linnenluecke, A. Griffiths, M. I. Winn, “Firm and Industry Adaptation to Climate Change: A Review of Climate Adaptation Studies in the Business and Management Field”, Wiley Interdiscip. Rev.Clim. Chang., Vol.4, p.397., 2013
[25] L. Berrang–Ford, T. Pearce, J.D. Ford, “Systematic Review Approaches for Climate Change Adaptation Research”, Reg. Environ. Chang., Vol.15, p.755. 2015.
[26] S. Lwasa, “A Systematic Review of research on Climate Change Adaptation Policy and Practice in Africa and South Asia Deltas”, Reg. Environ. Chang., Vol.15, p.815, 2015.
[27] R.K. Phalkey, C. Aranda–Jan, S. Marx, B. Höfle, R. Sauerborn, “A Systematic Review of Current Efforts to Quantify the Impacts of Climate Change on Undernutrition”, Proc. Natl. Acad. Sci., Vol.112, p.E4522, 2015.
[28] T.A. Crane, A. Delaney, P.A. Tamás, S. Chesterman, P. Ericksen, “A Systematic Review of Local Vulnerability to Climate Change in Developing Country Agriculture”, Wiley Interdiscip. Rev. Clim. Chang., Vol.8, p.464, 2017.
[29] F. Graham, J. Compton, K. Meador, “A systematic review of peer-reviewed literature authored by medical professionals regarding US biomedicine`s role in responding to climate change”, Prev. Med. Rep., 13, p.132, 2019.
[30] J.Y. Zhang, L. Zhao, S. Deng, W. C. Xu, Y. Zhang, “A critical review of the models used to estimate solar radiation”, Renew. Sust. Energy. Rev., Vol.70, p.314, 2017.
[31] H. Jiang, N. Lu, J. Qin, W. Tang, L. Yao, “A Deep Learning Algorithm to Estimate Hourly Global Solar Radiation from Geostationary Satellite Data”, Renew. Sustain. Energy Rev., Vol.114, p.109327, 2019.
[32] D. Steven, N. Stijn, “The Total Solar Irradiance Climate Data Record”, The Astrophys. J., Vol.830, p.25, 2015.
[33] C. Voyant, G. Notton, S. Kalogirou, M.L. Nivet, C. Paoli, F. Motte, A. Fouilloy, “ Machine learning methods for Solar Radiation Forecasting: A Review”, Renew. Energy, Vol.105, p.569, 2017.
[34] G. Kopp, “Earth’s Incoming Energy: The Total Solar Irradiance”, In S. Liang (Ed.), Comprehensive Remote Sensing: Earth`s Energy Budget.London: Elsevier, Vol.5, p.32, 2017.
[35] S. Dewitte, N. Clerbaux, “Measurement of the Earth Radiation Budget at the Top of the Atmosphere—A Review”, Remote Sens., Vol.9, p.1143, 2017.
[36] O. Coddington, J.L. Lean, P. Pilewskie, M. Snow, and D. Lindholm, “A Solar Irradiance Climate Data Record”, Bull.American Meteorol. Soc., Vol.97, p.1265, 2016.
[37] Y. Zhang, X. Qin, X. Li, J. Zhao, Y. Liu, “Estimation of Shortwave Solar Radiation on Clear–sky Days for a Valley Glacier with sentinel–2 Time Series”, Remote Sens., Vol.12, p.927, 2020.
[38] A.K. Penttilä, O. Ihalainen, E. Uvarova, M. Vuori, G. Xu, J. Näränen, …, A. Marshak, “Temporal Variation of the Shortwave Spherical Albedo of the Earth”, Front. Remote Sens., Vol.3, p.790723, 2022. doi: 10.3389/frsen.2022.790723
[39] J.M. Rajab, I.S. Abdulfattah, H.A. Mossa, S.Y. Sleeman, “Spatial and Temporal Distributions of Outgoing Longwave Radiation over Iraq: 007 – 2016”, IOP Conf. Series: Materials Science and Engineering, Vol.454, p.012030, 2018. doi:10.1088/1757-899X/454/1/012030.
[40] G.L. Stephens, D.O’Brien, P.J. Webster, P. Pilewski, S. Kato, J. L. Li, “The Albedo of Earth”, Reviews of geophysics, Vol.53, p.141, 2015.
[41] P.R. Goode, E. Pallé, A. Shoumko, S. Shoumko, P. Montañes-Rodriguez, S. E. Koonin, “Earth’s albedo 1998-2017 as measured from earthshine”, Geophys. Res. Lett., Vol.48, e2021GL094888, 2021. doi:10.1029/2021GL094888
[42] D. Wang, S. Liang, “Estimating High-resolution Top of Atmosphere Albedo from Moderate Resolution Imaging Spectroradiometer data”, Remote Sens.Environ., Vol.178, p.93, 2016.
[43] Z. Song, S. Liang, D. Wang, Y. Zhou, Y. Yu, “Long-term Record of Top-of-Atmosphere Albedo Generated from AVHRR Data”, Remote Sens. Environ., Vol.211, p.71, 2018.
[44] M. Wild, D. Folini, M.Z. Hakuba, C. Schär, S. I. Seneviratne, S. Kato, D. Rutan, “The Energy Balance over Land and Oceans: an Assessment Based on Direct Observations and CMIP5 Climate Models”, Clim. Dynam., Vol.44, p.3393, 2015.
[45] S. Dewitte, N. Clerbaux, “Decadal changes of Earth’s Outgoing Longwave Radiation”, Remote Sens., Vol.10, 1539, 2018. doi:10.3390/rs10101539
[46] C.J. Schreck, H.-T. Lee, K.R. Knapp, “HIRS Outgoing Longwave Radiation—Daily Climate DataRecord: Application toward Identifying Tropical SubseasonalVariability”, Remote Sens., Vol.10, p.1325, 2018.
[47] M. Saltykov, P. Belolipetsky, R.E. Hari, P.C. Reid, S. Bartsev, “Synchronous Shifts in Outgoing Longwave radiation and their Interpretation”,15th International Conference on Environmental Science and Technology, Rhodes, Greece, 31 August to 2 September 2017.
[48] M.S. Park, C.H. Ho, H. Cho, Y.S. Choi, “Retrieval of Outgoing Longwave Radiation from COMS narrowband infrared imagery”, Adv. Atmos. Sci., Vol.32, p.375, 2015.
[49] B.-Y. Kim, K.-T. Lee, J.-B. Jee, I.-S. Zo, “Retrieval of Outgoing Longwave Radiation at Top-Of-Atmosphere using Himawari-8 AHI data”, Remote Sens. Environ., Vol.204, p.498, 2018.
[50] J.F. Antonanzas-Torres, F. Cañizares, O. Perpiñán, “Comparative Assessment of global irradiation from a Satellite Estimate Model (CM SAF) and On-ground Measurements (SIAR): A Spanish Case Study”, Renew. Sustain. Energy Rev., Vol.21, p.248, 2013.
[51] J.Polo, S.Wilbert, J.A.Ruiz-Arias, R.Meyer, C. Gueymard, M.Suri, …, T. Cebecauer, “Preliminary Survey on Site-adaptation Techniques for Satellite-derived and Reanalysis Solar Radiation Datasets”, Solar Energy, Vol.132, p.25, 2019.
[52] A. Riihelä, T. Carlund, J. Trentmann, R. Müller, A. V. Lindfors, “Validation of CM SAF Surface Solar Radiation Datasets over Finland and Sweden”, Remote Sens., Vol.7, p.6663, 2015.
[53] A.G. Slater, “Surface Solar Radiation in North America: A Comparison of Observations, Reanalyses, Satellite, and Derived Products. J. Hydrometeorol., Vol.17, p.401, 2016.
[54] A. Loew, A. Andersson, J. Trentmann, M. Schröder, “Assessing surface solar radiation fluxes in the CMIP ensembles”, J. Clim., Vol.29, p.7231, 2016.
[55] G. Huang, Z. Li, X. Li, S. Liang, K.Yang, D. Wang, Y. Zhang, “Estimating Surface Solar Radiance from Satellites: Past, Present, and Future Perspectives”, Remote Sens. Environ., Vol.233, p.11137, 2019.
[56] H. Jiang, N. Lu, J. Qin, W. Tang, L. Yao, “A Deep Learning Algorithm to Estimate Hourly Global Solar Radiation from Geostationary Satellite Data”, Renew. Sustain. Energy Rev., Vol.114, p.109327, 2019.
[57] P. Kumar, B.K. Bhattacharya, R. Nigam, C.M. Kishtawal, P. K. Pal, “Impact of Kalpana-1 derived Land Surface albedo on Short-Range Weather Forecasting over the Indian Subcontinent”, J. Geophys. Res.: Atmos., Vol.119, p.2764, 2014.
[58] Y. Qu, Q. Liu, S. Liang, L. Wang, N. Liu, S. Liu., “Direct-Estimation Algorithm for Mapping Daily Land-Surface Broadband Albedo from MODIS Data”, IEEE Transactions on Geosci. Remote Sens., Vol.52, p.907, 2014.
[59] C.L. Zhou, K.C. Wang., “Land Surface Temperature Over Global Deserts: Means, Variability, and Trends”, J. Geophys. Res.: Atmos., Vol.121, p.14344, 2016.
[60] Y. Guo, J. Cheng, S. Liang, “Comprehensive Assessment of Parameterization Methods for Estimating Clear-sky Surface Downward Longwave Radiation”, Theor. Appl. Climatol., Vol.135, p.1045, 2018. Available from https://doi. org/10.1007/s00704-018-2423-7.
[61] M.A. Burt, D.A. Randall, M.D. Branson, “Dark Warming”, J. Clim., Vol.29, p.705, 2016. Available from https://doi.org/10.1175/ jcli-d-15-0147.1.
[62] L.R.V. Zeppetello, A. Donohoe, D.S. Battisti, “Does Surface Temperature Respond to or Determine Downwelling Longwave Radiation”, Geophys. Res. Lett., Vol.46, p.2781, 2019. Available from https://doi.org/10.1029/2019gl082220.
[63] F. Carmona, R. Rivas, C. Caselles, “Estimation of Daytime Downward Longwave Radiation Under Clear and Cloudy Skies Conditions over a Sub-Humid Region”, Theor. Appl. Climatol., Vol.115, p.281, 2014. Available from https://doi.org/10.1007/s00704-013-0891-3.
[64] J. Cheng, S.L. Liang, W.H. Wang, Y.M. Guo, “An Efficient Hybrid Method for Estimating Clear-sky Surface Downward Longwave Radiation from MODIS data”, J. Geophys. Res.: Atmos., Vol.122, p.2616, 2017. Available from https://doi.org/10.1002/2016jd026250.
[65] Y.Wei, X.Zhang, W.Li, N.Hou, W.Zhang, J.Xu, …, S. Liang, “Trends and Variability of Atmospheric Downward Longwave Radiation over China from 1958 to 2015”, Earth and Space Sci., Vol.8, 2020EA001370, 2021. Available from https://doi.org/10.1029/2020EA001370.
[66] O.O Soneye-Arogundade, “Evaluation and Calibration of Downward Longwave Radiation Models under a Cloudless Sky at Ile-Ife, Nigeria”, Atmósfera, Vol.34, p.417, 2021. Available from https://doi.org/10.20937/ATM.52843.
[67] K. Wang, R. E. Dickinson, "Global Atmospheric Downward Longwave Radiation at the Surface from Ground-based Observations, Satellite Retrievals, and Reanalyses”, Reviews of Geophys., Vol.51, p.150. 2013. Available from https://doi.org/10.1002/rog.20009.
[68] J. Wang, B.H. Tang, X.Y. Zhang, H. Wu, Z.L. Li, “Estimation of Surface Longwave Radiation Over the Tibetan Plateau region using MODIS Data for Cloud-free Skies”, IEEE J. Selected Topics in Appl. Earth Obs. Remote Sens., Vol.7, p.3695, 2014. Available from https://doi.org/10.1109/jstars.2014.2320585
[69] R. Johnson, T. Zhang, “Learning Nonlinear Functions using the Regularized Greedy Forest. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.36, p.942, 2014. https://doi.org/10.1109/tpami.2013.159
[70] Z. Zhu, S. Piao, R. B. Myneni, M. Huang, Z. Zeng, J. G. Canadell, P. Ciais, et al., “Greening of the Earth and its Drivers”, Nature Clim. Chang., Vol.6, p.791, 2016.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation