Full Paper View Go Back

A Comprehensive Evaluation of the Structural Stability of Core-Shell Hybrid Nanostructures for Hybrid Supercapacitor Applications

S.E Umoru1

Section:Research Paper, Product Type: Journal-Paper
Vol.10 , Issue.4 , pp.47-69, Apr-2024


Online published on Apr 30, 2024


Copyright © S.E Umoru . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: S.E Umoru, “A Comprehensive Evaluation of the Structural Stability of Core-Shell Hybrid Nanostructures for Hybrid Supercapacitor Applications,” International Journal of Scientific Research in Multidisciplinary Studies , Vol.10, Issue.4, pp.47-69, 2024.

MLA Style Citation: S.E Umoru "A Comprehensive Evaluation of the Structural Stability of Core-Shell Hybrid Nanostructures for Hybrid Supercapacitor Applications." International Journal of Scientific Research in Multidisciplinary Studies 10.4 (2024): 47-69.

APA Style Citation: S.E Umoru, (2024). A Comprehensive Evaluation of the Structural Stability of Core-Shell Hybrid Nanostructures for Hybrid Supercapacitor Applications. International Journal of Scientific Research in Multidisciplinary Studies , 10(4), 47-69.

BibTex Style Citation:
@article{Umoru_2024,
author = {S.E Umoru},
title = {A Comprehensive Evaluation of the Structural Stability of Core-Shell Hybrid Nanostructures for Hybrid Supercapacitor Applications},
journal = {International Journal of Scientific Research in Multidisciplinary Studies },
issue_date = {4 2024},
volume = {10},
Issue = {4},
month = {4},
year = {2024},
issn = {2347-2693},
pages = {47-69},
url = {https://www.isroset.org/journal/IJSRMS/full_paper_view.php?paper_id=3454},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRMS/full_paper_view.php?paper_id=3454
TI - A Comprehensive Evaluation of the Structural Stability of Core-Shell Hybrid Nanostructures for Hybrid Supercapacitor Applications
T2 - International Journal of Scientific Research in Multidisciplinary Studies
AU - S.E Umoru
PY - 2024
DA - 2024/04/30
PB - IJCSE, Indore, INDIA
SP - 47-69
IS - 4
VL - 10
SN - 2347-2693
ER -

130 Views    129 Downloads    35 Downloads
  
  

Abstract :
With a focus on hybrid supercapacitor applications, this thorough study attempts to present an in-depth evaluation of the status of research on the structural stability of core-shell hybrid nanostructures. In order to summarize important discoveries, identify trends, and draw attention to obstacles in the way of improving the structural stability of these nanostructures, the review looks at a broad variety of investigations that have been done in this field of research. Since core-shell hybrid nanostructures combine a functional shell with a stable core material, they present a promising material for enhancing the longevity and performance of hybrid supercapacitors. The review examines the advantages that these nanostructures provide, such as increased electrical conductivity, longer cycle life, and stronger mechanical strength. It also looks at the fundamental of hybrid supercapacitors, classes of core-shell hybrid nanostructures, types of core-shell hybrid nanostructures, factors that affect the structural stability of core-shell hybrid nanostructures, and the strategies for enhancing the structural stability of core-shell hybrid nanostructures. The evaluation does, however, also point out a number of challenges and potential study areas. Understand the long-term stability of core-shell hybrid nanostructures under various operating conditions, such as mechanical stress, humidity, and temperature fluctuations, requires more research. For these nanostructures to be widely used in real-world supercapacitor applications, it is also necessary to address their scalability and cost-effectiveness.

Key-Words / Index Term :
Comprehensive evaluation, Structural stability, Core-shell hybrid nanostructures, Durability, cycling stability, Hybrid supercapacitor, Energy storage, Performance

References :
[1] Mohammad Amir , Radhika G. Deshmukh, Haris M. Khalid, Zafar Said , Ali Raza, S.M. Muyeen, Abdul-Sattar Nizami, Rajvikram Madurai Elavarasan, R. Said, Kamaruzzaman Sopian, “Energy storage technologies: An integrated survey of developments, global economical/environmental effects, optimal scheduling model, and sustainable adaption policies”, Journal of Energy Storage 72, Part E, pp.108694, 2023
[2] P.C. Himadri Reddy, John Amalraj S. Ranganatha, Smitha S. Patil , Saravanan Chandrasekara , “A review on effect of conducting polymers on carbon-based electrode materials for electrochemical supercapacitors”, Synthetic Metals, Vol. 298, pp.117447, 2022
[3] Dhruba P. Chatterjee , Arun K. Nandi, “A review on the recent advances in hybrid supercapacitors,” J. Mater. Chem. A , Vol. 9, pp.15880-15918, 2021
[4] Elumalai Dhandapani, Sadhasivam Thangarasu , K. Ramesh c, R. Vasudevan, Navaneethan Duraisamy , “Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor — A review”, Journal of Energy Storage, 52, Part C, pp.104937, 2022
[5] Sultan Ahmed, Ahsan Ahmed, D. Baba Basha, Shahir Hussain, Islam Uddin, M.A. Gondal , “Critical review on recent developments in conducting polymer nanocomposites for supercapacitors”, Synthetic Metals, Vol. 295, pp.117326, 2023
[6] Chen-qi YI, Jian-peng ZOU, Hong-zhi YANG, Xian LENG , “Recent advances in pseudocapacitor electrode materials: Transition metal oxides and nitrides”, Transactions of Nonferrous Metals Society of China, Vol. 28, Issue 10, pp. 1980-2001, 2018
[7] Wei Hau Low, Poi Sim Khiew, Siew Shee Lim, Chiu Wee Siong, Ejikeme Raphael Ezeigwe , “Recent development of mixed transition metal oxide and graphene/mixed transition metal oxide based hybrid nanostructures for advanced supercapacitors, Journal of Alloys and Compounds, Vol.775, pp. 1324-1356, 2019
[8] Ali Saad, Zhixing Cheng, Hangjia Shen, Tiju Thomas, Minghui Yang , “Recent Advances in Nanocasting Cobalt-Based Mesoporous Materials for Energy Storage and Conversion”, Electrocatalysi, Vol. 11, pp.465–484, 2020
[9] Hong Wang, Liyong Chen, Yuhua Feng, Hongyu Chen , “Exploiting Core–Shell Synergy for Nanosynthesis and Mechanistic Investigation”, Acc. Chem. Res. 2013, 46, 7, 1636–1646, 2018.
[10] Hao-peng Feng, Lin Tang , Guang-ming Zeng , Yaoyu Zhou , Yao-cheng Deng, Xiaoya Ren, Biao Song, Chao Liang, Meng-yun Wei, Jiang-fang Yu , “Advances in Colloid and Interface Science”, Vol. 267, Pp. 26-46, 2019
[11] Aqib Muzaffar, M. Basheer Ahamed, Kalim Deshmukh, Jagannathan Thirumalai , “A review on recent advances in hybrid supercapacitors: Design, fabrication and applications”, Renewable and Sustainable Energy Reviews, Vol. 101, pp. 123-145, 2019
[12] Ahmed Afif , Sheikh MH Rahman , Atia Tasfiah Azad , Juliana Zaini , Md Aminul Islan , Abul Kalam Azad , “Advanced materials and technologies for hybrid supercapacitors for energy storage – A review”, Journal of Energy Storage,Vol.25,pp. 100852, 2019
[13] B. E. Conway ,W. G. Pell , “Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices”, Journal of Solid State Electrochemistry, Vol. 7, pp.637–644, 2003.
[14] Jinfeng Li, Phi H. Q. Pham, Weiwei Zhou, Ted D. Pham, Peter J. Burke , ‘Carbon-Nanotube–Electrolyte Interface: Quantum and Electric Double Layer Capacitance”, ACS Nano, Vol. 12, Issue 10, pp. 9763–9774, 2018
[15] Simon Fleischmann, James B. Mitchell, Ruocun Wang, Cheng Zhan, De-en Jiang, Volker Presser, Veronica Augustyn , ‘Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials”, Chem. Rev. Vol. 120, Issue 14, pp. 6738–6782, 2020
[16] Dubal, D. P., O. Ayyad, V. Ruiz, and P. Gómez-Romero. , “Hybrid energy storage: The merging of battery and supercapacitor chemistries”. Chemical Society Reviews 44 (7):1777–90. doi:10.1039/C4CS00266K., 2015
[17] Muhammad Zahir Iqbal, Mian Muhammad Faisal, , “Integration of supercapacitors and batteries towards high-performance hybrid energy storage devices”, Energy Research, Vol. 45, Issue 2, pp. 1449-1479,2020
[18] MaherF. El-Kady, Melanie Ihns, Mengping Li, Richard B. Kaner , ‘Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage”, PNAS, Vol. 112 , Issue 14), pp. 4233-4238, 2015
[19] Yin, Y., Liu, C., Fan, S. , “Hybrid energy storage devices combining carbon-nanotube/polyaniline supercapacitor with lead-acid battery assembled through a "directly- inserted" method(Article)”, RSC Adv.,Vol. 4, pp. 26378-26382, 2014
[20] P.A. Nelson, J.R. Owen , ‘A High-Performance Supercapacitor/Battery Hybrid Incorporating Templated Mesoporous Electrodes(Article) “,J. Electrochem. Soc., Vol. 150, pp. A1313-A1317, 2003
[21] Y.G. Wang, Y.Y. Xia ,’ A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn 2O4 aqueous system(Article)”, Electrochem. Commun., Vol. 7, pp. 1138-1142, 2005
[22] Q. Wang, Z.H. Wen, J.H. Li , “A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode(Article)”, Adv. Funct. Mater., Vol. 16 , pp. 2141-2146, 2006
[23] G.C. Li, G.R. Li, S.H. Ye, X.P. Gao , “A Polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries(Article)”, Adv. Energy Mater., Vol. 2, pp. 1238-1245, 2012
[24] Muhammad Sajjad a b, Muhammad Ibrar Khan c, Fang Cheng a b, Wen Lu , :A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors”, Journal of Energy Storage, Vol. 40, pp. 102729, 2021.
[25] Wenjun Zhou, Meng Zhang, Xiangyue Kong, Weiwei Huang, Qichun Zhang , “Recent Advance in Ionic-Liquid-Based Electrolytes for Rechargeable Metal-Ion Batteries”, Advanced Science, Vol. 8, Issue 13, pp.2004490, 2021
[26] Dan Gao , Zhiling Luo , Changhong Liu , Shoushan Fan , “A survey of hybrid energy devices based on supercapacitors”, Green Energy & Environment, Vol. 8, Issue 4, pp. 972-988, 2023.
[27] Y.L. Yin, C.H. Liu, S.S. Fan , “Hybrid energy storage devices combining carbon-nanotube/polyaniline supercapacitor with lead-acid battery assembled through a "directly- inserted" method(Article)”, RSC Adv., Vol. 4 , pp. 26378-26382, 2004.
[28] R. Bhattacharyya, B. Key, H.L. Chen, A.S. Best, A.F. Hollenkamp, C.P. Grey ,” In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries(Article)”, Nat. Mater., Vol. 9 , pp. 504-510, 2010.
[29] P.A. Nelson, J.R. Owen , “A High-Performance Supercapacitor/Battery Hybrid Incorporating Templated Mesoporous Electrodes(Article)}, J. Electrochem. Soc., Vol. 150, pp. A1313-A1317, 2003.
[30] Eunho Lim , Changshin Jo , Haegyeom Kim , Mok-Hwa Kim , Yeongdong Mun, Jinyoung Chun, Youngjin Ye, Jongkook Hwang, Kyoung-Su Ha, Kwang Chul Roh, Kisuk Kang , Songhun Yoon , Jinwoo Lee , “Facile Synthesis of Nb2O5@Carbon Core-Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors”, ACS Nano, 9(7):7497-505. doi: 10.1021/acsnano.5b02601. Epub 2015 Jun 24, 2015.
[31] Kuo-Chuan Ho, Lu-Yin Lin , “A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors,” J. Mater. Chem. A, Vol. 7, pp. 3516-3530, 2019
[32] Pascal Nbelayim, Yuya Ashida, Keiichiro Maegawa, Go Kawamura, Hiroyuki Muto, Atsunori Matsuda , “Preparation and Characterization of Stable and Active Pt@TiO2 Core–Shell Nanoparticles as Electrocatalyst for Application in PEMFCs”, ACS Appl. Energy Mater.Vol. 4, pp. 3269–3281, 2020.
[33] Qi Liu, Zhe-Fei Li, Yadong Liu, Hangyu Zhang, Yang Ren, Cheng-Jun Sun, Wenquan Lu, Yun Zhou, Lia Stanciu, Eric A. Stach, Jian Xie , “Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries’, Nature Communications, Vol. 6, pp.6127, 2015
[34] Qingqing Ke, Minrui Zheng, Huajun Liu, Cao Guan, Lu Mao, John Wang , “3D TiO2@Ni(OH)2 Core-shell Arrays with Tunable Nanostructure for Hybrid Supercapacitor Application”, Scientific Reports 5, 13940, 2015.
[35] .Xibin Xu, Miao Liu, Jiang-shan Luo, Yu-ying Wang , “Nanoscale Energy Confinement and Hybridization of Surface Plasmons Based on Skin Depth in Au/Ag Core-Shell Nanostructures”, Plasmonics, Vol. 10, Issue 4, pp. 797-808, 2015
[36] Das, S.; Pérez-Ramírez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B.C.; Kawi, S. , ‘Core–Shell Structured Catalysts for, Thermocatalytic, Photocatalytic, and Electrocatalytic Conversion of CO2”, Chem. Soc. Rev. ,Vol. 49, pp. 2937–3004, 2021.
[37] Rimmy Singh, Rachna Bhateria , “Core–shell nanostructures: a simplest two-component”, Environ Geochem Health, https://doi.org/10.1007/s10653-020-00766-1(0, 2020
[38] 1Kunfeng Chen, Shuyan Song, Fei Liu, Dongfeng Xue , “Structural design of graphene for use in electrochemical energy storage devices”, Chem. Soc. Rev., Vol.44, pp.6230-6257, 2015.
[39] Mayuresh Khot, Rahaman Sharif Shaik, Wania Touseef , Amirkianoosh Kian , “Binder-free NiO/CuO hybrid structure via ULPING (Ultra-short Laser Pulse for In-situ Nanostructure Generation) technique for supercapacitor electrode”, Scientific Reports, Vol. 13, pp. 6975, 2023.
[40] Yan Zhao, Linfeng Hu, Shuyan Zhao, Limin Wu , “Preparation of MnCo2O4@Ni(OH)2 Core–Shell Flowers for Asymmetric Supercapacitor Materials with Ultrahigh Specific Capacitance”, Advanced Functional Materials, Vol. 26, Issue23, pp. 4085-4093, 2016.
[41] H. Vijeth a b, S.P. Ashokkumar a, L. Yesappa a, M. Vandana a, H. Devendrappa , “Hybrid core-shell nanostructure made of chitosan incorporated polypyrrole nanotubes decorated with NiO for all-solid-state symmetric supercapacitor application”, Electrochimica Acta, Vol. 354, pp. 136651, 2020.
[42] Liu Wan, Jiaxing Liu, Xiang Li, Yan Zhang, Jian Chen, Cheng Du, Mingjiang Xie , “Fabrication of core-shell NiMoO4@MoS2 nanorods for high-performance asymmetric hybrid supercapacitors”, International Journal of Hydrogen Energy, Vol. 45, Issue 7, pp. 4521-4533, 2021.
[43] Franciele Wolfart,a Deepak P. Dubal,*b Marcio Vidotti*a and Pedro G´omez-Romero , “Hybrid core–shell nanostructured electrodes made of polypyrrole nanotubes coated with Ni(OH)2 nanoflakes for high energy-density supercapacitors”, RSC Adv., Vol. 6, pp. 15062, 2016.
[44] Bell, Charleson Sherard , ‘Novel multilayered magnetoplasmonic nanoparticles for theranostic applications”, ?Vanderbilt University?ProQuest Dissertations Publishing.?pp.10582903, 2015
[45] Qun Liu , Xiaodan Hong , Xingyan You, Xin Zhang, Xin Zhao, Xing Chen, Meidan Ye, Xiangyang Liu , “Designing heterostructured metal sulfide core-shell nanoneedle films as battery-type electrodes for hybrid supercapacitors, Energy Storage Materials, Vol.24,pp. 541-549, 2020.
[46] Chuan Xia, Wei Chen, Xianbin Wang, Mohamed N. Hedhili, Nini Wei, , “Highly Stable Supercapacitors with Conducting Polymer Core-Shell Electrodes for Energy Storage Applications, Advanced Energy Materials, Vol.5, Issue 8, pp. 1401805, 2015.
[47] K.W. Wang, Ting Yan, W.G. Pan ,” Optimization strategies of microencapsulated phase change materials for thermal energy storage”, Journal of Energy Storage, Vol. 68, pp.107844, 2023.
[48] .Rajib Ghosh Chaudhuri, Santanu Paria ,” Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications”, Chem. Rev. Vol. 4, pp. 2373–2433, 2012.
[49] Vancha Harish, M.M. Ansari, Devesh Tewari, Awadh Bihari Yadav, Neelesh Sharma, Sweta Bawarig , María-Luisa García-Betancourt, Ali Karatutlu, Mikhael Bechelany, Ahmed Barhoum , “Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review”, Journal of the Taiwan Institute of Chemical Engineers, Vol.149, pp.105010, 2023.
[50] Karthik Kiran Sarigamala, Shobha Shukla, Alexander Struck, Sumit Saxena , “Rationally engineered 3D-dendritic cell-like morphologies of LDH nanostructures using graphene-based core–shell structures”, Microsyst Nanoeng, Vol. 5, pp. 65, 2018
[51] Yefeng Yang, Ding Cheng, Shaojie Chen, Yingli Guan, Jie Xiong ,” Construction of Hierarchical NiCo2S4@Ni(OH)2 Core-Shell Hybrid Nanosheet Arrays on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors”, Electrochimica Acta, Vol.193, pp.116-127, 2016.
[52] Chunli Guo, Yan’an Meng, Deyang Yu, Liangyu Liu, Yingjie Hua, Xudong Zhao, Xiaoyang Liu , “Synthesis of the sandwich-type NiMn2O4@N-C@MnO2 core-shell nanostructured materials for the high-performance battery-supercapacitor hybrid devices’, Journal of Energy Storage, Vol. 68, pp. 107814,2023.
[53] Xin Jiao, Biyu Li, Jian Wang, Yingchun Fan, Yongchang Ma, Zhihao Yuan, Chenguang Zhang ,’ Size-controllable synthesis of covalently interconnected few-shelled Fe3O4@onion-like carbons for high-performance asymmetric supercapacitors, Carbon, Vol. 203, pp. 261-272, 2023.
[54] Guihua Yu, Xing Xie, Lijia Pan, Zhenan Bao, Yi Cu , “Hybrid nanostructured materials for high-performance electrochemical capacitors”, Nano Energy, Vol. 2, Issue 2,pp. 213-234, 2013.
[55] Nagabandi Jayababu, Seungju Jo, Youngsu Kim, Daewon Kim , “Preparation of NiO decorated CNT/ZnO core-shell hybrid nanocomposites with the aid of ultrasonication for enhancing the performance of hybrid supercapacitors”, Ultrasonics Sonochemistry, Vol.71,pp. 105374, 2021.
[56] Yefeng Yang, Ding Cheng, Shaojie Chen, Yingli Guan, Jie Xiong , “Construction of Hierarchical NiCo2S4@Ni(OH)2 Core-Shell Hybrid Nanosheet Arrays on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors”, Electrochimica Acta, Vol.193, pp. 116-127, 2016
[57] Songmin Zhang, Jiawen Wu, Jitong Wang, Wenming Qiao, Donghui Long, Licheng Ling ,:Constructing T-Nb2O5@Carbon hollow core-shell nanostructures for high-rate hybrid supercapacitor”, Journal of Power Sources, Vol. 396, pp.88-94, 2018
[58] Miao Du,Weimin Xia, Zhichao Jiao, Yuanqing Chen, Muslum Demir, Ying Zhang, Mengmeng Gu, Xiaoxuan Zhang, Cheng Wang , “Construction of hierarchical sugar gourd-like (Ni,Co)Se2/(Ni,Co)Se2/CC nanostructure with enhanced performance for hybrid supercapacitor, Journal of Alloys and Compounds, Vol. 930, pp.167459, 2023.
[59] Huaping Zhao ,” 3D Nanostructures for the Next Generation of High-Performance Nanodevices for Electrochemical Energy Conversion and Storage”, Advanced Energy Materials, Vol.10, Issue 28, pp. 2001460, 2020.
[60] Arava Leela Mohana Reddy, Sanketh R. Gowda, Manikoth M. Shaijumon , “Hybrid Nanostructures for Energy Storage Applications, Advanced Materials, Vol. 24, Issue 37, pp. 5045-5064, 2012
[61] Yulin Min , “Core-Shell and Yolk-Shell Nanocatalysts” , Part of the Nanostructure Science and Technology book series (NST), pp 515–562, 2021.
[62] Xin Li, John Wang , “One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion”, Infomat, Vol. 2, Issue 1, pp. 3-32, 2020
[63] Gen Chen, Litao Yan, Hongmei Luo, Shaojun Guo ,“Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium-Ion Storage”, Advanced Materials, Vol. 28, Issue 35, pp.7580-7602, 2016.
[64] Long-bo Jiang, Xing-zhong Yuan , Jie Liang, Jin Zhang, Hou Wang , Guang-ming Zeng ,”Nanostructured core-shell electrode materials for electrochemical capacitors”, Journal of Power Sources, Volume 331, pp 408-425, 2016.
[65] Kuo-Chuan Ho, Lu-Yin Lin, “A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors”, J. Mater. Chem. A,Vol.7, pp.3516-3530, 2019
[66] Ruiqi Liu1, Shusheng Xu4,1, Xiaoxuan Shao1, Yi Wen1, Xuerong Shi1, Jing Hu2 and Zhi Yang, “Carbon coating on metal oxide materials for electrochemical energy storage”, Nanotechnology Vol.32 pp.502004, 2021.
[67] Long-bo Jiang , Xing-zhong Yuan c, Jie Liang , Jin Zhang , Hou Wang , Guang-ming Zeng, “Nanostructured core-shell electrode materials for electrochemical capacitors”, Journal of Power Sources, Vol.331, pp 408-425, 2016
[68] Leiyun Han a, Xilong Liu a, Yang Chen a, Zheng Cui a, Yingjie Hua b, Chongtai Wang b, Xudong Zhao a, Xiaoyang Liu, “ High energy density pouch-type supercapacitor achieved by MOFs derived 3D hollow N-doped carbon with Fe2O3 and hierarchical CuCo2S4@NiFe-LDH core-shell nanostructures”, Electrochimica Acta, Vol.467, pp. 143131, 2023
[69] Ronghao Wang, Hongmin Liu, Yuhao Zhang, Kaiwen Sun, Weizhai Bao, “Integrated Photovoltaic Charging and Energy Storage Systems: Mechanism, Optimization, and Future”, Nano-Micro Small, Vol.18, Issue 31, pp.2203014, 2022.
[70] Ximan Dong, Xinyue Chen, Xin Jiang, Nianjun Yang, “ Light-Assisted Energy Storage Devices: Principles, Performance, and Perspectives”, Advanced Energy Materials, Vol.13, Issue 38, 2301143, 2023.
[71] Tao Liu, Liuyang Zhang, Bei Cheng, Jiaguo Yu, “Hollow Carbon Spheres and Their Hybrid Nanomaterials in Electrochemical Energy Storage, Advanced Energy Materials, Vol. 9, Issue 17, pp.1803900, 2019.
[72] Rui Xu, Lei Du, David Adekoya, Gaixia Zhang, Shanqing Zhang, Shuhui Sun , “Well-Defined Nanostructures for Electrochemical Energy Conversion and Storage”, Advanced Energy Materials, Vol.11, Issue15, Special Issue: 10th Anniversary Edition, International Collaborations in Energy Research, pp.2001537, 2021.
[73] Le Yu, Han Hu, Hao Bin Wu, “Complex Hollow Nanostructures: Synthesis and Energy-Related Applications”, Advanced Materials, Vol.29, Issue15, pp.1604563, 2017.
[74] Jing Pan ,Shaobin Li , Fengbo Li, Wenzhi Zhang , Dongxuan Guo , Li Zhang , Deqing Zhang , Hong Pan ,Yushu Zhang , Yifeng Ruan, “Design and construction of core-shell heterostructure of Ni-V layered double hydroxide composite electrode materials for high-performance hybrid supercapacitor and L-Tryptophan sensor”, Journal of Alloys and Compounds, Vol. 890,pp.161781, 2022.
[75] Hemming Zhao, Zepeng Zhang, Chungui Zhou, Huifang Zhang , “Turning the morphology and size of NiMoO4 Nanosheets anchored on NiCo2O4 nanowires: the optimized core-shell hybrid for high energy density asymmetric supercapacitors”, Applied surface science, Vol. 541, pp. 148458, 2021.
[76] Danyang Li, Jing Lin, Yang Huang, Xin He, Chao Yu, Jun Zhang, Chengchun Tang, “MnO2 Nanosheets grown on N-doped agaric-derived three-dimensional porous carbon for asymmetric supercapacitors”, Journal of alloys and compounds. Vol. 815, pp. 152344, 2020.
[77] Qingqing Ke, Minrui Zhang, Huajun Liu, Cao Guan, Lu Mao, John Wang, “3D TiO2@Ni(OH)2 core-shell Arrays with Tunable Nanostructure for hybrid supercapacitor application”, Scientific Reports, Vol. 5, pp. 13940, 2015.
[78] Ashutosh Kumar Singh, Kalyan Mandal, ‘Core-Shell hybrid Nanostructure Based High performance supercapacitor Electrode”, 2 Physics, Indian, 2015.
[79] Ashutosh k. Singh, Kalyan Mandal, “Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe2O3-NiO core-shell Nanostructures”, Journal of Applied Physics, Vol.117, pp. 105101, 2015.
[80] Jianming Wang, Ying Huang, Xianping Du, Shuai Zhang, Meng Zang, “Hollow 1D carbon tube core anchored in Co3O4@SnS2 multiple shells for constructing free electrodes, Chemical Engineering Journal, Vol.464, pp.142741, 2023.
[81] Yi Wang, Jie Wang, Dong Wei, Lan Xu, “Multicore-shell MnO2@ppy@N-doped porous carbon Nanofiber ternary composites as electrode materials for high-performance supercapacitors”, Journal of Colloid and interface Science, Vol. 648, pp. 925-939, 2023.
[82] Yumak, T., Bragg, D., &Sabolsky, E. M. “Effect of synthesis methods on the surface and electrochemical characteristics of metal oxide/activated carbon composites for supercapacitor applications”. Applied Surface Science, Vol. 469,pp. 983-993, 2019.
[83] Chang, C., Chen, W., Chen, Y., Chen, Y., Chen, Y., Ding, F, Liu, Z, “Recent progress on two-dimensional materials”. Acta Phys.-Chim. Sin, Vol.37, Issue 12, pp.2108017, 2021.
[84] Zardkhoshoui, A. M, Davarani, S. S. H. “Designing a flexible all-solid-state supercapacitor based on CuGa2O4 and FeP-rGO electrodes”. Journal of Alloys and Compounds, Vol. 773, pp.527-536, 2019.
[85] Changhoon Song Junyeong Yun , Kayeon Keum , Yu Ra Jeong, Heun Park, Hanchan Lee, Geumbee Lee, Seung Yun Oh, Jeong Sook Ha, “High performance wire-type supercapacitor with Ppy/CNT-ionic liquid/AuNP/carbon fiber electrode and ionic liquid based electrolyte”, Carbon, Vol. 144,pp. 639-648, 2019.
[86] Liu, J., Qiao, S. Z., Budi Hartono, S., & Lu, G. Q. “Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors”. Angewandte Chemie International Edition, Vol.49, Issue 29, pp. 4981–4985, 2010.
[87] Kamata, K., Lu, Y., & Xia, Y, “Synthesis and characterization of monodispersed core- shell spherical colloids with movable cores”. Journal of the American Chemical, Society, Vol. 125, Issue 9, pp. 2384–2385, 2003.
[88] Kim, J. Y., Yoon, S. B., Kooli, F., Lee, C. W.,&Yu, J. S, “Synthetic control of ordered and disordered arrays of carbon nanofibers from SBA-15 silica templates”. Chemical Communications, Vol. 14, pp. 1740–1741, 2003.
[89] Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai,. G. A., & Alivisatos, A. P, “Formation of hollow nanocrystals through the nanoscale Kirkendall effect”, Science, Vol. 304, Issue 5671, pp. 711–714, 2004.
[90] Camargo, P. H., Xiong, Y., Ji, L., Zuo, J. M., & Xia, Y, “Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails”. Journal of the American Chemical Society, Vol. 129, Issue 50, pp. 15452–15453, 2007.
[91] Zhang, T., Ge, J., Hu, Y., Zhang, Q., Aloni, S.,&Yin, Y., “Formation of hollow silica colloids through a spontaneous dissolution–regrowth process. Angewandte Chemie International Edition, Vol. 47, Issue 31, pp. 5806–5811, 2008.
[92] Liu, J., Xu, J., Che, R., Chen, H., Liu, M., & Liu, Z. “Hierarchical Fe3O4@ TiO2 yolk–shell microspheres with enhanced microwave-absorption properties”. Chemistry A European Journal, Vol. 19, Issue 21, pp. 6746–52, 2013.
[93] Liu, R., Guo, Y., Odusote, G., Qu, F., & Priestley, R. D. “Core–shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent”. ACS applied materials & interfaces, Vol. 5, Issue 18, pp. 9167–9171, 2013.
[94] Zhang, L., Wang, T., Li, L., Wang, C., Su, Z., & Li, J. “Multifunctional fluorescent-magnetic polyethyleneimine functionalized Fe3O4–mesoporous silica yolk–shell nanocapsules for siRNA delivery”. Chemical Communications, Vol. 48, Issue 69, pp. 8706–8708, 2012.
[95] Zhang, H., Zhou, L., Noonan, O., Martin, D. J., Whittaker, A. K., & Yu, C, “Tailoring the void size of iron oxide@ carbon yolk–shell structure for optimized lithium storage”., Advanced Functional Materials, Vol. 24, Issue 27, pp. 4337–4342, 2014.
[96] Zhang, L., Wang, T., Li, L., Wang, C., Su, Z., & Li, J., “Multifunctional fluorescent-magnetic polyethyleneimine functionalized Fe3O4–mesoporous silica yolk–shell nanocapsules for siRNA delivery”. Chemical Communications, Vol. 48, Issue 69, pp. 8706–8708, 2012.
[97] Wu, X. J., & Xu, D., “Formation of yolk/SiO2 shell structures using surfactant mixtures as template”. Journal of the American Chemical Society, Vol. 131, Issue 8, pp. 2774–2775, 2009.
[98] Velikov, K. P., & van Blaaderen, A. , “Synthesis and characterization of monodisperse core- shell colloidal spheres of zinc sulfide and silica”. Langmuir, Vol. 17, Issue 16, pp. 4779–4786, 2001.
[99] Park, J., Joo, J., Kwon, S. G., Jang, Y., & Hyeon, T. “Synthesis of monodisperse spherical nanocrystals”, Angewandte Chemie International Edition, Vol. 46, Issue 25, pp.4630–4660, 2007.
[100] Zhang, J., Tang, Y., Weng, L., & Ouyang, M., “Versatile strategy for precisely tailored core@ shell nanostructures with single shell layer accuracy: The case of metallic shell”, Nano letters, Vol. 9, Issue 12, pp. 4061–4065, 2009.
[101] Muzikansky, A, Nanikashvili, P., Grinblat, J., & Zitoun, D. , “Ag dewetting in Cu@ Ag monodisperse core–shell nanoparticles”. The Journal of Physical Chemistry C, Vol. 117, Issue 6, pp. 3093–3100, 2013.
[102] Chen, D., Xia, X., Gu, H., Xu, Q., Ge, J., Li, Y., & Lu, J. “PH-responsive polymeric carrier encapsulated magnetic nanoparticles for cancer targeted imaging and delivery”, Journal of Materials Chemistry,Vol. 21, Issue 34, pp.12682–12690, 2011.
[103] Chen, L., Xu, S., & Li, J. “Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications”. Chemical Society Reviews, Vol. 40, Issue 5, pp.2922–2942, 2011.
[104] Shiomi, T., Matsui, M., Mizukami, F., & Sakaguchi, K. ‘A method for the molecular imprinting of hemoglobin on silica surfaces using silanes”. Biomaterials, Vol. 26, Issue27, pp.5564–5571, 2005.
[105] Jia, X., Li, H., Luo, J., Lu, Q., Peng, Y., Shi, L., et al. “Rational design of core-shell molecularly imprinted polymer based on computational simulation and Doehlert experimental optimization: Application to the separation of tanshinone IIA from Salvia miltiorrhiza Bunge”. Analytical and Bioanalytical Chemistry, Vol. 403, Issue 9, pp. 2691–2703, 2012.
[106] Jankiewicz, B. J., Jamiola, D., Choma, J.,&Jaroniec, M. “Silica–metal core–shell nanostructures”. Advances in colloid and interface science, Vol. 170, Issue 1–2, pp. 28–47, 2012.
[107] Gustafsson, G., Cao, Y., Treacy, G. M., Klavetter, F., Colaneri, N., & Heeger, A. J, ‘Flexible light-emitting diodes made from soluble conducting polymers”. Nature, Vol.357, Issue 6378, pp.477, 1992.
[108] Liu, W., Kumar, J., Tripathy, S., Senecal, K. J., & Samuelson, L. “Enzymatically synthesized conducting polyaniline”. Journal of the American Chemical Society, Vol. 121, Issue 1,pp. 71–78, 1999.
[109] Holleman, A. F., & Wiberg, E. “Inorganic chemistry. Berlin/New York: Academic Press, 2001.
[110] Liz-Marzan, L. M., Correa-Duarte, M. A., Pastoriza-Santos, I., Mulvaney, P., Ung, T., Giersig, M., et al. “Coreshell nanoparticles and assemblies thereof. In H. S. Nalawa (Ed.), Hand book of surfaces and interfaces of materials”. Amsterdam: Elsevier, 2001
[111] Ung, T., Liz-Marza´n, L. M., & Mulvaney, P. ,“Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions”, Langmuir, Vol.14, Issue 14, pp. 3740–3748, 1998.
[112] Xie, L., Guo, J., Zhang, Y., & Shi, S, “Efficient determination of protocatechuic acid in fruit juices by selective and rapid magnetic molecular imprinted solid phase extraction coupled with HPLC”,Journal of Agriculture and Food Chemistry, Vol. 62, Issue 32, pp. 8221–8228, 2014.
[113] Lu, F., Li, H., Sun, M., Fan, L., Qiu, H., Li, X.,&Luo, C, “Flow injection chemiluminescence sensor based on coreshell magnetic molecularly imprinted NPs for determination of sulfadiazine”. Analytica Chimica Acta, Vol.718, pp. 84–91, 2012.
[114] Uzuriaga-Sanchez, R. J., Khan, S., Wong, A., Picasso, G., Pividori, M. I., & Sotomayor, M. D. T. , “Magnetically separable polymer (magMIP) for selective analysis of biotin in food samples”, Food Chemistry, Vol. 190, pp. 460–467, 2016.
[115] Kan, X., Zhao, Q., Shao, D., Geng, Z., Wang, Z., & Zhu, J. J. ,” Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers”, Journal of Physical Chemistry B, Vol.114, Issue 11, pp. 3999–4004, 2010.
[116] Pichon, B. P., Gerber, O., Lefevre, C., Florea, I., Fleutot, S., Baaziz, W., & Pierron-Bohnes, V. , “Microstructural and magnetic investigations of wustite-spinel core-shell cubic-shaped nanoparticles”. Chemistry of Materials, Vol.23, Issue 11, pp. 2886–2900, 2011.
[117] Gao, Q., Chen, F., Zhang, J., Hong, G., Ni, J., Wei, X., & Wang. D, “The study of novel Fe3O4@ c-Fe2O3 core/shell nanomaterials with improved properties”, Journal of magnetism and magnetic materials, Vol. 321, Issue 8, pp. 1052–1057, 2009.
[118] Tian, Y., Wu, D., Jia, X., Yu, B., Zhan, S, “Core-Shell Nanostructure of Synthesis and Photocatalysis for Methyl Orange”. Journal of Nanomaterials, 2011
[119] Wang, H., Chen, L., Feng, Y., & Chen, H., “Exploiting core–shell synergy for nanosynthesis and mechanistic investigation”. Accounts of chemical research, Vol. 46, Issue 7, pp. 1636–1646, 2013.
[120] Watson, K. J., Zhu, J., Nguyen, S. T., & Mirkin, C. A.,”Hybrid nanoparticles with block copolymer shell structures”. Journal of the American Chemical Society, Vol. 121, Issue 2, pp. 462–463, 1999.
[121] Willner, I., & Katz, E, “Magnetic control of electrocatalytic and bioelectrocatalytic processes”, Angewandte Chemie, Vol.115, Issue 38, pp.4724–4737, 2003.
[122] Xu, X., Friedman, G., Humfeld, K. D., Majetich, S. A., & Asher, S. A. , “Superparamagnetic photonic crystals”. Advanced materials, 1Vol. 3, Issue 22, pp. 1681–1684, 2001.
[123] Xu, X., Friedman, G., Humfeld, K. D., Majetich, S. A., & Asher, S. A, “ Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals”. Chemistry of Materials, Vol. 14, Issue 3, pp. 1249–1256, 2002.
[124] Chen, D., Xia, X., Gu, H., Xu, Q., Ge, J., Li, Y., & Lu, J, “PH-responsive polymeric carrier encapsulated magnetic nanoparticles for cancer targeted imaging and delivery”. Journal of Materials Chemistry, Vol. 21, Issue 34, pp. 12682–12690, 2011.
[125] Chen, L., Xu, S., & Li, J, “Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications”. Chemical Society Reviews, Vol. 40, Issue 5, pp. 2922–2942, 2011.
[126] Kim, H., Achermann, M., Balet, L. P., Hollingsworth, J. A., & Klimov, V. I, “Synthesis and characterization of Co/CdSe core/shell nanocomposites: Bifunctional magneticoptical nanocrystals”, Journal of the American Chemical Society, Vol.127, 2, pp.544–546, 2005.
[127] Kim, J. Y., Yoon, S. B., Kooli, F., Lee, C. W.,&Yu, J. S. (2003). Synthetic control of ordered and disordered arrays of carbon nanofibers from SBA-15 silica templates. Chemical Communications, Vol. 14, pp.1740–1741.
[128] Rocha, N., Mendes, J., Dura˜es, L., Maleki, H., Portugal, A., Geraldes, C. F., & Coelho, J, “Poly (ethylene glycol)-block-poly (4-vinyl pyridine) as a versatile block copolymer to prepare nanoaggregates of superparamagnetic iron oxide nanoparticles”, Journal of Materials Chemistry B, Vol.2, Issue11, pp.1565–1575, 2014.
[129] Serpell, C. J., Cookson, J., Ozkaya, D., & Beer, P. D, “Core@ shell bimetallic nanoparticle synthesis via anion coordination”, Nature chemistry, Vol. 3, Issue 6, pp. 478, 2011.
[130] Mizukoshi, Y., Fujimoto, T., Nagata, Y., Oshima, R., & Maeda, Y, “Characterization and catalytic activity of coreshell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method”, The Journal of Physical Chemistry B, Vol. 104, Issue 25, pp. 6028–6032, 2000.
[131] Yan, J. M., Zhang, X. B., Akita, T., Haruta, M.,&Xu, Q, “One-step seeding growth of magnetically recyclable Au@Co core- shell nanoparticles: Highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane”, Journal of the American Chemical Society, Vol. 132, Issue 15, pp. 5326–5327, 2010.
[132] Zheng, Y., Cheng, Y., Wang, Y., Bao, F., Zhou, L., Wei, X.,et al., “Quasicubic a-Fe2O3 nanoparticles with excellent catalytic performance”, The Journal of Physical Chemistry B, Vol. 110, Issue 7, pp. 3093–3097, 2006.
[133] V. Schmidt, P. C. McIntyre, and U. Gösele, “Morphological instability of misfit-strained core-shell nanowires”, Phys. Rev. B Vol. 77, pp. 235302, 2008.
[134] D. Bochicchio, R. Ferrando , “ Morphological instability of core-shell metallic nanoparticles, Materials Science, Physics, DOI:10.1103/PhysRevB.87.165435, 2013.
[135] Shai Mangel, L. Houben, M. Bar Sadan , “The effect of atomic disorder at the core-shell interface on stacking fault formation in hybrid nanoparticles”, Nanoscale, Vol. 8, pp.17568, 2016
[136] Hong Wang , Liyong Chen, Yuhua Feng, Hongyu Chen, “Exploiting core-shell synergy for nanosynthesis and mechanistic investigation”, Acc Chem Res, Vol. 16;46, Issue 7, pp. 1636-46, 2013
[137] Yassmin Ibrahim, Ahmed Mohamed, Ahmed M. Abdelgawad, Kamel Eid, Aboubakr M. Abdullah, Ahmed Elzatahry , “The Recent Advances in the Mechanical Properties of Self-Standing Two-Dimensional MXene-Based Nanostructures: Deep Insights into the Supercapacitor”, Nanomaterials, Vol. 10, Issue 10, pp. 1916, 2020
[138] Zhengchen Wu, Han-Wen Cheng, Chen Jin, Bintong Yang, Chunyang Xu, Ke Pei, Huibin Zhang, Ziqi Yang, Renchao Che , “Dimensional Design and Core–Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption”, Advanced, Advanced Materials, Vol. 34, Issue11, pp. 2107538, 2021.
[139] Xin LXini John Wang, “One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion”, InfoMat, Vol. 2, Issue1, pp. 3-32, 2019
[140] Qi Xue, Jinfeng Sun, Yan Huang, Minshen Zhu, Zengxia Pei, Hongfei Li, Yukun Wang, Na Li, Haiyan Zhang, Chunyi Zhi, “Recent Progress on Flexible and Wearable Supercapacitors”, Nano-Micro Small, Vol. 13, Issue 45, pp. 1701827, 2017
[141] Liyang Lin , Huiming Ning , Shufeng Song , Chaohe Xu , Ning Hu, “Flexible electrochemical energy storage: The role of composite materials”, Composites Science and Technology, Vol.192, pp.108102, 2020.
[142] Guangmeng Qu a, Pengxiao Sun a, Guotao Xiang a, Jiangmei Yin a, Qin Wei b c, Chenggang Wang a, Xijin Xu, “Moss-like nickel-cobalt phosphide nanostructures for highly flexible all-solid-state hybrid supercapacitors with excellent electrochemical performances, Vol. 20, pp. 100713, 2020
[143] Ganest Kumar Veerasubramani, Arunkumar Chandrasekhar, Sudhakaran M. S. P., Young Sun Mok , Sang Jae Kim, “Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core–shell nanostructures assembled with honeycomb-like porous carbon”, J. Mater. Chem. A, Vol. 5, pp. 11100-11113, 2017
[144] Humin Zheng , Teng Zhai,a Minghao Yu,a Shilei Xie,a Chaolun Liang,ad Wenxia Zhao,d Shing Chi Ian Wang,e Zishou Zhang*ac and Xihong Lu, “TiO2@C core–shell nanowires for high-performance and flexible solid-state supercapacitors”, J. Mater. Chem. C, Vol. 1, pp. 225-229, 2013.
[145] Mianomiao Liang Mingshu Zhao, Haiyang Wang, Qingyang Zheng, Xiaoping Song ,”Superior cycling stability of a crystalline/amorphous Co3S4 core–shell heterostructure for aqueous hybrid supercapacitors”, J. Mater. Chem. A, Vol. 6, pp. 21350-21359, 2018.
[146] Mengqiao Wang, Zhaoqiang Li, Chengxiang Wang, Ruizheng Zhao, Caixia Li, Dexiang Guo, Luyuan Zhang, Longwei Yin, “ Advanced Functional Materials, Novel Core–Shell FeOF/Ni(OH)2 Hierarchical Nanostructure for All-Solid-State Flexible Supercapacitors with Enhanced Performance, Vol. 27, Issue 31, pp. 1701014, 2017.
[147] Hao-peng Feng , Lin Tang , Guang-ming Zeng , Yaoyu Zhou , Yao-cheng Deng , Xiaoya Ren , Biao Song , Chao Liang, Meng-yun Wei , Jiang-fang Yu , “Core-shell nanomaterials: Applications in energy storage and conversion”, Advances in Colloid and Interface Science, Vol. 267, pp. 26-46, 2019.
[148] Qiwen Ran , Hongyuan Zhao , Youzuo Hu , Shuai Hao , Jintao Liu , Hao Li , Xingquan Liu, “Enhancing surface stability of LiNi0.8Co0.1Mn0.1O2 cathode with hybrid core-shell nanostructure induced by high-valent titanium ions for Li-ion batteries at high cut-off voltage”, Journal of Alloys and Compounds, Vol. 834, pp 155099, 2020.
[149] Wenhao Ren, Chenfeng Ding , Xuewei Fu, Yun Huang, “Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives”, Energy Storage Materials, Vol. 34, pp. 515-535, 2021.
[150] Hao-Peng Feng, Lin Tang, Guang-ming Zeng, Jing Tang, Yao-cheng Deng, Ming Yan, Ya-ni Liu, Yao-yu Zhou, Xiao-ya Ren, Song Chen, “Carbon-based core–shell nanostructured materials for electrochemical energy storage”, J. Mater. Chem. A, Vol. 6, pp. 7310-7337, 2018.
[151] Haitao Bi, Gang Sui, Xiaoping Yang, “Studies on polymer nanofibre membranes with optimized core–shell structure as outstanding performance skeleton materials in gel polymer electrolytes”, Journal of Power Sources, Vol. 267,pp. 309-315, 2014.
[152] Xiaolin Li 1, Wen Liu, Minye Zhang 2, Yiren Zhong, Zhe Weng, Yingying Mi 2, Yu Zhou, Min Li, Judy J Cha, Zhiyong Tang 3, Hong Jiang 2, Xueming Li 1, Hailiang Wang, “Strong Metal-Phosphide Interactions in Core-Shell Geometry for Enhanced Electrocatalysis”, Nano Lett, Vol. 17, Issue 3, pp. 2057-2063, 2017.
[153] Chunjoong Kim, Patrick J. Phillips, Linping Xu, Angang Dong, Raffaella Buonsanti, Robert F. Klie, Jordi Cabana, “Stabilization of Battery Electrode/Electrolyte Interfaces Employing Nanocrystals with Passivating Epitaxial Shells, Chem. Mater. Vol. 27, Issue 1,pp. 394–399, 2015.
[154] Hao Shan, Wenpei Gao, Yalin Xiong, Fenglei Shi, Yucong Yan, Yanling Ma, Wen Shang, Peng Tao, Chengyi Song, Tao Deng, Hui Zhang, Deren Yang, Xiaoqing Pan, Jianbo Wu, “Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticles”, Nature Communications,vol. 9, pp.1011, 2018.
[155] Qiao Zhang , Ilkeun Lee, Ji Bong Joo, Francisco Zaera, Yadong Yin, “Core-shell nanostructured catalysts”, Acc Chem Res, Vol. 46, Issue 8, pp. 1816-24, 2013
[156] Robert V Dennis5,1,2, Vikas Patil5,3, Justin L Andrews1,2, Jeffrey P Aldinger4, Ganapati D Yadav3 and Sarbajit Banerjee, “Hybrid nanostructured coatings for corrosion protection of base metals: a sustainability perspective”, Materials Research Express, Vol. 2, pp. 3, 2015
[157] Rimmy Singh, Rachna Bhateria, “Core–shell nanostructures: a simplest two-component system with enhanced properties and multiple applications”, Environmental Geochemistry and Health, Vol.43, pp.2459–2482, 2021
[158] Linhua Hu, Philipp Brüner, Thomas Grehl, Hidde H. Brongersma, Jordi Cabana, “Control of Chemical Structure in Core–Shell Nanocrystals for the Stabilization of Battery Electrode/Electrolyte Interfaces”, Chem. Mater. Vol. 29, Issue 14, pp. 5896–5905, 2017.
[159] Roberto C Longo 1, Chaoping Liang 1, Fantai Kong 1, Kyeongjae Cho, “Core-Shell Nanocomposites for Improving the Structural Stability of Li-Rich Layered Oxide Cathode Materials for Li-Ion Batteries, ACS Appl Mater Interfaces, Vol. 10, Issue 2, pp. 19226-19234, 2018
[160] Daniel Göhl, Aaron Garg, Paul Paciok, Karl J. J. Mayrhofer, Marc Heggen, Yang Shao-Horn, Rafal E. Dunin-Borkowski, Yuriy Román-Leshkov, Marc Ledendecker, “Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells”, Nature Materials vol. 19, pp.287–291, 2020
[161] Xianbin Liu, Ziping Wu, Yanhong Yin, “Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors”, Chemical Engineering Journal, Vol. 323, pp. 330-339, 2017
[162] Jinghuang Lin a, Henan Jia a, Haoyan Liang a, Shulin Chen a, Yifei Cai a, Junlei Qi a, Chaoqun Qu b, Jian Cao a, Weidong Fei a, Jicai Feng , “ Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors”, Chemical Engineering Journal, Vol. 336, pp. 562-569, 2018.
[163] Yang Han a 1, Qin Zhang a 1, Nantao Hu a, Xue Zhang a, Yiyong Mai a, Jiaqiang Liu b, Xiaolin Hua b, Hao Wei , “Core-shell nanostructure of single-wall carbon nanotubes and covalent organic frameworks for supercapacitors”, Chinese Chemical Letters, Vol. 28, Issue 12, pp. 2269-2273, 2017
[164] Ting Zhu , Jing Wang , Ghim Wei Ho, “Self-supported yolk–shell nanocolloids towards high capacitance and excellent cycling performance”, Nano Energy, Vol. 18, pp.273-282, 2015.
[165] Grégory Spataro 1, Yohan Champouret 1, Yannick Coppel 1, Myrtil L Kahn, “Prominence of the Instability of a Stabilizing Agent in the Changes in Physical State of a Hybrid Nanomaterial”, Chemphyschem, Vol. 21, Issue 21, pp. 2454-2459, 2020.
[166] D. Bowles, James Y. Shen, “Thermal cycling effects on the dimensional stability of P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates”, Materials Science, Engineering, 1983.
[167] Zakaria Razak , Abu Bakar Sulong , Norhamidi Muhamad , Che Hassan Che Haron , Mohd Khairul Fadzly Md Radzi , Nur Farhani Ismail , Dulina Tholibon , Izdihar Tharazi, “Effects of thermal cycling on physical and tensile properties of injection moulded kenaf/carbon nanotubes/polypropylene hybrid composites”, Composites Part B: Engineering, Vol.168, pp.159-165, 2019.
[168] Yan Yao, Nian Liu, Matthew T. McDowell, Mauro Pasta and Yi Cui, “Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings”, Energy Environ. Sci., Vol. 5, pp. 7927-7930, 2012.
[169] Hamed Akbarzadeh 1, Esmat Mehrjouei1, Amir Nasser Shamkhali, “ Au@Void@Ag Yolk-Shell Nanoclusters Visited by Molecular Dynamics Simulation: The Effects of Structural Factors on Thermodynamic Stability”, J Phys Chem Lett, Vol. 8, Issue 13, pp. 2990-2998, 2017
[170] Martin Schnedlitz 1, Ricardo Fernandez-Perea 2, Daniel Knez 3, Maximilian Lasserus 1, Alexander Schiffmann 1, Ferdinand Hofer 3, Andreas W Hauser 1, Maria Pilar de Lara-Castells 4, Wolfgang E Ernst , “Effects of the Core Location on the Structural Stability of Ni-Au Core-Shell Nanoparticles”, J Phys Chem C Nanomater Interfaces, Vol. 123, Issue 32, pp.20037-20043, 2019.
[171] Max Willinger 1, Erik Reimhult, “Thermoresponsive Nanoparticles with Cyclic-Polymer-Grafted Shells Are More Stable than with Linear-Polymer-Grafted Shells: Effect of Polymer Topology, Molecular Weight, and Core Size’, J Phys Chem B, Vol.125, Issue 25, pp. 7009-7023, 2021
[172] Hongxiang Wang 1, Hucheng Song 1, Zixia Lin 1, Xiaofan Jiang 1, Xiaowei Zhang 1, Linwei Yu 1, Jun Xu 1, Lijia Pan 1, Junzhuan Wang 1, Mingbo Zheng 1, Yi Shi 1, Kunji Chen, “ Highly cross-linked Cu/a-Si core-shell nanowires for ultra-long cycle life and high rate lithium batteries”, Nanoscale, Vol.8, Issue 5, pp.2613-9, 2016
[173] Hao-peng Feng , Lin Tang , Guang-ming Zeng , Yaoyu Zhou , Yao cheng Deng , Xiaoya Ren , Biao Song , Chao Liang , Meng-yun Wei , Jiang-fang Yu , “Core-shell nanomaterials: Applications in energy storage and conversion”, Advances in Colloid and Interface Science, Vol. 267, pp. 26-46, 2019.
[174] Kuo-Chuan Ho , Liu-Yin Lin,” A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors”, J. Mater. Chem. A, Vol. 7, pp. 3516-3530, 2019.
[175] Li Liu, Yuehong Qi, Jinrong Lu, Shuanglong Lin, Weijia An, Yinghua Liang, Wenquan Cui ,” A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation”, Applied Catalysis B: Environmental, Vol. 183, pp. 133-141, 2016
[176] Wei Li, Ahmed Elzatahry, Dhaifallah Aldhayan, Dongyuan Zhao, “Core–shell structured titanium dioxide nanomaterials for solar energy utilization”, Chem. Soc. Rev., Vol. 47, pp.8203-8237, 2018
[177] Tilahun Temesgen , Eneyew Tilahun Bekele , Bedasa Abdisa Gonfa , Lemma Teshome Tufa , Fedlu Kedir Sabir , Sisay Tadesse , Yilkal Dessie , “ Advancements in biomass derived porous carbon materials and their surface influence effect on electrode electrochemical performance for sustainable supercapacitors: A review”, Journal of Energy Storage, Vol.73, Part D, pp. 109293, 2023.
[178] Yuerong Zhou a, Yunhe Li a, Yilong Hou a, Ce Wang a, Ying Yang a, Jiangwei Shang b, Xiuwen Cheng ,” Core-shell catalysts for the elimination of organic contaminants in aqueous solution: A review”, Chemical Engineering Journal, Vol.455, pp.140604, 2023.
[179] Kai Qi, Ruizuo Hou, Shahid Zaman, Bao Yu Xia , Hongwei ,” A core/shell structured tubular graphene nanoflake-coated polypyrrole hybrid for all-solid-state flexible supercapacitors”, J. Mater. Chem. A, Vol. 6,pp. 3913-3918, 2018
[180] T. Kavinkumar , Selvaraj Seenivasan , Hong H. Lee , Hyeonjung Jung , Jeong Woo Han , Do-Heyoung Kim , “Interface-modulated uniform outer nanolayer: A category of electrodes of nanolayer-encapsulated core-shell configuration for supercapacitors”, Nano Energy, Vol.81, pp.105667, 2021
[181] Lingli Cheng , Yiyang Hu , Lei Ling , Dandan Qiao , Shicong Cui , Zheng Jiao ,” One-step controlled synthesis of hierarchical hollow Ni3S2/NiS@Ni3S4 core/shell submicrospheres for high-performance supercapacitors”, Electrochimica Acta, Vol. 283, pp. 664-675, 2018.
[182] Long-bo Jiang , Xing-zhong Yuan , Jie Liang, Jin Zhang , Hou Wang , Guang-ming Zeng , “Nanostructured core-shell electrode materials for electrochemical capacitors”, Journal of Power Sources, Vol. 331, pp. 408-425, 2016.
[183] Fengqi Liu , Chenbo He , Yonggang Jiang , Yaping Yang , Fei Peng a, Lanfang Liu a, Jing Men a, Junzong Feng , Liangjun Li , Guihua Tang , Jian Feng, “Carbon layer encapsulation strategy for designing multifunctional core-shell nanorod aerogels as high-temperature thermal superinsulators”, Chemical Engineering Journal, Vol. 455, pp.140502, 2021.
[184] Yu Zhang , Benedict You Wei Hsu , Changliang Ren , Xu Li and John Wang (2015), “Silica-based nanocapsules: synthesis, structure control and biomedical applications”, Chem. Soc. Rev, vol.44, pp.315-335
[185] Duy Thanh Tran , Tolendra Kshetri , Dinh Chuong Nguyen , Jagadis Gautam , Van Hien Hoa , Huu Tuan Le , Nam Hoon Kim , Joong Hee Lee, “ Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications”,Nanotoday, Vol. 22, pp. 100-131, 2018
[186] Wanlu Yang, Zan Gao, Jing Ma,a Xingming Zhang Jun Wang and Jingyuan Liu, “Hierarchical NiCo2O4@NiO core–shell hetero-structured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor”; J. Mater. Chem. A, Vol. 2, pp. 1448-1457, 2014
[187] Demetra S. Achilleos, T. Alan Hatton, “Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance”, Journal of Colloid and Interface Science, Vol.447, pp. 282-301, 2015
[188] Samia Mahouche-Chergui, Sarra Gam-Derouich, Claire Mangeney, and Mohamed M. Chehimi, “Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces”, Chem. Soc. Rev., Vol. 40, pp.4143-4166, 2011
[189] Sümeyra Vural Kaymaz , Hediyeh, Malekzadsani Nobar , Hasan Sar?gül , Caner Soylukan , Lalehan Akyüz , Meral Yüce , “Nanomaterial surface modification toolkit: Principles, components, recipes, and applications”, Advances in Colloid and Interface Science, Vol. 322, pp.103035, 2023
[190] D. Lakshmi, M. Infanta Diana,, P. Adlin Helen & P. Christopher Selvin, “Functionalized Nanomaterials, Classification, Properties, and Functionalization Techniques”, Functionalized Nanomaterials Based Supercapacitor pp 65–92, 2024.
[191] Zhenghui Li, Zhaopeng Li, Liuqing Li, Chengfei Li, Weihao Zhong, Haiyan Zhang, “Construction of Hierarchically One-Dimensional Core–Shell CNT@Microporous Carbon by Covalent Bond-Induced Surface-Confined Cross-Linking for High-Performance Supercapacitor”, ACS Appl. Mater. Interfaces, Vol.9, Issue 18, pp.15557–15565, 2017
[192] Neha Singh, Ankur Malik, Shakshi Nohwar, Rathin Jana, Prakash Chandra Mondal, “Covalent surface modification of nickel ferrite nanoparticles for electrochemical supercapacitor performance”, New J. Chem, Vol. 47, pp. 5308-5315, 2023.
[193] P. G. Campbell, M. D. Merrill, B. C. Wood, E. Montalvo, M. A. Worsley,T. F. Baumann, J Biener, ‘ Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies”, J. Mater. Chem. A, Vol. 2, pp. 17764-17770, 2014
[194] Neeraj Kumar, Suprakas Sinha Ray, “ Synthesis and Functionalization of Nanomaterials “,Processing of Polymer-based Nanocomposites, Vol.277, pp 15–55, 2018.
[195] Mohammed Majdoub, Zakaria Anfar, Abdallah Amedlous, “Emerging Chemical Functionalization of g-C3N4: Covalent/Noncovalent Modifications and Applications”, ACS Nano, Vol. 14, pp.10, 12390–12469, 2020.
[196] Kwanchai Buaksuntear, Phakamat Limarun, Supitta Suethao, Wirasak Smitthipong, Wirasak Smitthipong, “Non-Covalent Interaction on the Self-Healing of Mechanical Properties in Supramolecular Polymers”, Int. J. Mol. Sci. Vol. 23, Issue 13, pp.6902, 2022.
[197] Salah Ud Din, Muhammad Sajid, Muhammad Imran, Javed Iqbal, Basit Ali Shah, Muhammad Azeem ullah, Sufaid Shah, “One step facile synthesis, characterization and antimicrobial properties of Mg-doped CuO nanostructures”, Mater. Res. Express, Vol. 6, pp 085022, 2019
[198] Elena V. Shevchenko, Dmitri V. Talapin, Heimo Schnablegger, Andreas Kornowski, Örjan Festin, Peter Svedlindh, Markus Haase, Horst Weller, ‘Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals:? The Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals”, J. Am. Chem. Soc. Vol. 125, Issue 30, pp. 9090–9101, 2003
[199] Xinhang Guo, Siyang Lin, Yan Wang, Wangfeng Cai,” Novel core–shell structure composite NiCo2O4–Vo@ZIF with amorphous ZIF shell and oxygen-vacancy-rich core for asymmetric supercapacitors”, Electrochimica Acta, Vol. 475, 143636, 2024.
[200] Ahmed Mohamed El-Toni,*ab Mohamed A. Habila,c Joselito Puzon Labis,ad Zeid A. ALOthman,c Mansour Alhoshan,e Ahmed A. Elzatahry, Fan Zhang, “Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures”, Nanoscale, Vol. 8, pp.2510-2531, 2016
[201] Sattar Mohammadi Esfarjani, Ali Dadashi, Mohammad Azadi, “Topology optimization of additive-manufactured metamaterial structures: A review focused on multi-material types”, Forces in Mechanics, Vol. 7,pp.100100, 2022
[202] Lu Liu, Shuzhong Wang, Baoquan Zhang, Guanyu Jiang, Hui Liu, Jianqiao Yang, Jinglong Wang, Wei Liu,’ Present status and prospects of nanostructured thermal barrier coatings and their performance improvement strategies: A review”, Journal of Manufacturing Processes, Vol. 97, pp.12-34,2023
[203] R. Daniel, D. Holec, M. Bartosik, J. Keckes , C. Mitterer,” Size effect of thermal expansion and thermal/intrinsic stresses in nanostructured thin films: Experiment and model”, Acta Materialia, Vol. 59, Issue 17, pp. 6631-6645, 2011
[204] Van-Nam Hoang, Phuong Tran , Van-Tuyen Vu , H. Nguyen-Xuan, “Design of lattice structures with direct multiscale topology optimization”, Composite Structures, Vol. 252,112718, 2020.
[205] Yi Gan, Cong Wang, Jingying Li, Junjie Zheng, Ziang Wu, Lin Lv, Pei Liang, Houzhao Wan, Jun ZhangHao Wang, “Stability Optimization Strategies of Cathode Materials for Aqueous Zinc Ion Batteries: A Mini Review”, Front. Chem., Vol. 9.
[206] Matthew,N. O’Brien, Matthew R. Jones, Chad A. Mirkin chadnano, “The nature and implications of uniformity in the hierarchical organization of nanomaterials”, PNAS< Vol. 113, Issue 42, pp. 11717-11725, 2016
[207] Zhengchen Wu, Han-Wen Cheng, Chen Jin, Bintong Yang, Chunyang Xu, Ke Pei, Huibin Zhang, Ziqi Yang, “Dimensional Design and Core–Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption”, Advanced Materials, Vol. 34, Issue11, pp. 2107538, 2022
[208] Tian Gan , Zhikai Wang, Zhaoxia Shi , Dongyun Zheng , Junyong Sun , Yanming Liu, “Graphene oxide reinforced core–shell structured Ag@Cu2O with tunable hierarchical morphologies and their morphology–dependent electrocatalytic properties for bio-sensing applications”, Biosensors and Bioelectronics Vol.112, pp.23-30, 2018
[209] Qiannan Lin, Ziqi Sun, Yuhai Dou, Jung Ho Kim, Shi Xue Dou, “Two-step self-assembly of hierarchically-ordered nanostructures”, J. Mater. Chem. A, Vol. 3, pp. 11688-11699, 2015.
[210] Rongchen Shen a, Chuanjia Jiang b, Quanjun Xiang c, Jun Xie a, Xin Li , “Surface and interface engineering of hierarchical photocatalysts”, Applied Surface Science, Vol. 471, pp. 43-87
[211] Jian Sun, Mingrui Liang, Lu Yin, Geoffrey Rivers, Guangwei Hu, Qinmin Pan, Boxin Zhao, “Interfacial Compatibility of Core–Shell Cellulose Nanocrystals for Improving Dynamic Covalent Adaptable Networks’ Fracture Resistance in Nanohybrid Vitrimer Composites”, ACS Appl. Mater. Interfaces, Vol. 15, Issue 33, pp. 39786–39796, 2023
[212] Yamei Li, Shidong Ji, Yanfeng Gao, Hongjie Luo, Ping Jin,” Modification of Mott Phase Transition Characteristics in VO2@TiO2 Core/Shell Nanostructures by Misfit-Strained Heteroepitaxy”, ACS Appl. Mater. Interfaces, Vol. 5, Issue 14, pp. 6603–6614, 2013
[213] Ali Shafiee, Navid Rabiee, Sepideh Ahmadi, Marzieh Baneshi, Mehrdad Khatami, Siavash Iravani, Rajender S. Varma, “Core–Shell Nanophotocatalysts: Review of Materials and Applications”, ACS Appl. Nano Mater. Vol. 5, Issue 1, pp. 55–86, 2022
[214] Francesca Pietra, Luca De Trizio, Anne W. Hoekstra, Nicolas Renaud, Mirko Prato, Ferdinand C. Grozema, Patrick J. Baesjou, Rolf Koole, Liberato Manna, Arjan J. Houtepen, “Tuning the Lattice Parameter of InxZnyP for Highly Luminescent Lattice-Matched Core/Shell Quantum Dots”, ACS Nano, Vol. 10, Issue 4, pp. 4754–4762, 2016
[215] JIATAO ZHANG, YUN TANG, KWAN LEE, AND MIN OUYANG Authors Info & Affiliations, “Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches”, SCIENCE, Vol 327, Issue 5973, pp. 1634-1638, 2010
[216] Jia Liu and Jiatao Zhang, “Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals”, Chem. Rev.Vol. 120, Issue 4, pp. 2123–2170, 2020
[217] panelJin Cao, Jinxu Liu , Xingwei Liu, Shukui Li, Xinying Xue, “Effect of the distribution state of transition phase on the mechanical properties and failure mechanisms of the W–Mo–Cu alloy by tuning elements content”, Journal of Alloys and Compounds, Vol. 827, pp.154333, 2020
[218] Zhirong Liao a, Andrea la Monaca, James Murray, Alistair Speidel, Dmitrii Ushmaev, Adam Clare, Dragos Axinte, Rachid M`Saoub, “Surface integrity in metal machining - Part I: Fundamentals of surface characteristics and formation mechanisms”, International Journal of Machine Tools and Manufacture, Vol. 162,103687, 2021

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation