Full Paper View Go Back
Bitopi Biswas1 , Md Rubayet Haider2 , M. Robiul Islam3
- Precision and Automated Agriculture Laboratory, Dept. of Agronomy and Agricultural Extension, University of Rajshahi, Bangladesh.
- Precision and Automated Agriculture Laboratory, Dept. of Agronomy and Agricultural Extension, University of Rajshahi, Bangladesh.
- Precision and Automated Agriculture Laboratory, Dept. of Agronomy and Agricultural Extension, University of Rajshahi, Bangladesh.
Section:Research Paper, Product Type: Journal-Paper
Vol.10 ,
Issue.11 , pp.8-15, Nov-2024
Online published on Nov 30, 2024
Copyright © Bitopi Biswas, Md Rubayet Haider, M. Robiul Islam . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Bitopi Biswas, Md Rubayet Haider, M. Robiul Islam, “Fuzzy Logic-Based Precision Foliar Application Amount Determination Using Digital Image Processing of Maize Canopy,” International Journal of Scientific Research in Multidisciplinary Studies , Vol.10, Issue.11, pp.8-15, 2024.
MLA Style Citation: Bitopi Biswas, Md Rubayet Haider, M. Robiul Islam "Fuzzy Logic-Based Precision Foliar Application Amount Determination Using Digital Image Processing of Maize Canopy." International Journal of Scientific Research in Multidisciplinary Studies 10.11 (2024): 8-15.
APA Style Citation: Bitopi Biswas, Md Rubayet Haider, M. Robiul Islam, (2024). Fuzzy Logic-Based Precision Foliar Application Amount Determination Using Digital Image Processing of Maize Canopy. International Journal of Scientific Research in Multidisciplinary Studies , 10(11), 8-15.
BibTex Style Citation:
@article{Biswas_2024,
author = {Bitopi Biswas, Md Rubayet Haider, M. Robiul Islam},
title = {Fuzzy Logic-Based Precision Foliar Application Amount Determination Using Digital Image Processing of Maize Canopy},
journal = {International Journal of Scientific Research in Multidisciplinary Studies },
issue_date = {11 2024},
volume = {10},
Issue = {11},
month = {11},
year = {2024},
issn = {2347-2693},
pages = {8-15},
url = {https://www.isroset.org/journal/IJSRMS/full_paper_view.php?paper_id=3698},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRMS/full_paper_view.php?paper_id=3698
TI - Fuzzy Logic-Based Precision Foliar Application Amount Determination Using Digital Image Processing of Maize Canopy
T2 - International Journal of Scientific Research in Multidisciplinary Studies
AU - Bitopi Biswas, Md Rubayet Haider, M. Robiul Islam
PY - 2024
DA - 2024/11/30
PB - IJCSE, Indore, INDIA
SP - 8-15
IS - 11
VL - 10
SN - 2347-2693
ER -
Abstract :
In this research an automatic and nondestructive method of precision farming (like foliar application of nutrient / herbicide /pesticide) was developed with the help of maize canopy cover and fuzzy logic. For this study it used data from an experiment conducted at the Department of Agronomy and Agricultural Extension, Field Laboratory, University of Rajshahi. Digital image taken from the field and processed for a precise amount of nutrient / herbicide /pesticide recommendation. The system input variables based on fuzzy rules were canopy cover (%) being defined as three fuzzy sets. The output variable was foliar agrochemical application recommendation. For output variables 3 fuzzy sets were defined. Canopy cover (%) based precise amount of nutrient / herbicide /pesticide application will optimize production cost with the right amount and ensure a sustainable environment. The results of the simulation showed significant reductions in agrochemical usage compared to a uniform blanket application across the field. For areas with sparse canopy cover, agrochemical use was reduced by as much as 75%.
Key-Words / Index Term :
image processing, canopy cover, fuzzy logic, foliar spray
References :
[1] G. Khaspuria, A. Khandelwal, M. Agarwal, M. Bafna, R. Yadav, A. Yadav, “Adoption of Precision Agriculture Technologies among Farmers: A Comprehensive Review,” Journal of Scientific Research and Reports, Vol.30, Issue.7, pp.671-686, 2024. https://doi.org/10.9734/jsrr/2024/v30i72180
[2] A. Punia, L. Dehal, N. S. Chauhan, “Evidence of the toxic potentials of agrochemicals on human health and biodiversity. In One Health Implications of Agrochemicals and their Sustainable Alternatives,” Singapore: Springer Nature Singapore, pp.105-135, 2023. https://doi.org/10.1007/978-981-99-3439-3_4
[3] R. Naresh, N. K. Singh, P. Sachan, L. K. Mohanty, S. Sahoo, S. K. Pandey, B. Singh, “Enhancing Sustainable Crop Production through Innovations in Precision Agriculture Technologies,” Journal of Scientific Research and Reports, Vol.30, Issue.3, pp.89-113, 2024. https://doi.org/10.9734/jsrr/2024/v30i31861
[4] A. Soussi, E. Zero, Sacile, R. D. Trinchero, M. Fossa, “Smart Sensors and Smart Data for Precision Agriculture: A Review,” Sensors, Vol.24, Issue.8, pp.1-32, 2024. https://doi.org/10.3390/s24082647
[5] F. Dorbu, L. Hashemi-Beni, “Detection of Individual Corn Crop and Canopy Delineation from Unmanned Aerial Vehicle Imagery,”. Remote Sensing, Vol.16, Issue.14, pp.2679, 2024. https://doi.org/10.3390/rs16142679
[6] R. R. Vennam, P. Ramamoorthy, S. Poudel, K. R. Reddy, W. B. Henry, R. Bheemanahalli, “Developing functional relationships between soil moisture content and corn early-season physiology, growth, and development,”. Plants, Vol.12, Issue.13, pp.1-14, 2023. https://doi.org/10.3390/plants12132471
[7] K. Montgomery, J. B. Henry, M. C. Vann, B. E. Whipker, A. S. Huseth, H. Mitasova, “Measures of canopy structure from low-cost UAS for monitoring crop nutrient status,”Drones, Vol.4, Issue.3, pp.1-22, 2020.. https://doi.org/10.3390/drones4030036
[8] M. Ishfaq, A. Kiran, H. ur Rehman, M. Farooq, N. H. Ijaz, F. Nadeem, A. Wakeel, “Foliar nutrition: Potential and challenges under multifaceted agriculture,” Environmental and Experimental Botany, Vol.200, pp.104909, 2022. https://doi.org/10.1016/j.envexpbot.2022.104909
[9] P. Whig, A. B., Bhatia, R. R. Nadikatu, Y. Alkali, P. Sharma, “GIS and Remote Sensing Application for Vegetation Mapping. In Geo-Environmental Hazards using AI-enabled Geospatial Techniques and Earth Observation Systems Cham,” Springer Nature Switzerland, pp. 17-39, 2024. https://doi.org/10.1007/978-3-031-53763-9_2
[10] B. Biswas, M. R Islam, “Growth, Physiological Responses and Yield of Maize (Zea mays L.) to Silica Nanoparticles Application at Different Growth Stages,” Int. J. Sci. Res. in Multidisciplinary Studie,s Vol.10, Issue.7, pp.1-10, 2024.
[11] A. Singh, B. Wagner, S. Kasel, P. J. Baker, C. R. Nitschke, “Canopy Composition and Spatial Configuration Influences Beta Diversity in Temperate Regrowth Forests of Southeastern Australia,” Drones, Vol. 7, Issue 3, pp.1-14, 2023. https://doi.org/10.3390/drones7030155
[12] S. Ghazal, A. Munir, W. S. Qureshi, “Computer vision in smart agriculture and precision farming: Techniques and applications,” Artificial Intelligence in Agriculture. Vol.13, pp.64-83, 2024. https://doi.org/10.1016/j.aiia.2024.06.004.
[13] U. Ahmad, A. Nasirahmadi, O. Hensel, S. Marino, “Technology and data fusion methods to enhance site-specific crop monitoring,” Agronomy, Vol.12, Issue.3, pp.555, 2022. https://doi.org/10.3390/agronomy12030555
[14] A. S. Khuman, “Teaching Fuzzy Logic Utilising Innovative Approaches. In Higher Education Computer Science: A Manual of Practical Approaches,” Cham: Springer International Publishing, pp.149-158, 2023. https://doi.org/10.1007/978-3-031-29386-3_11
[15] Saini, M., Kumar, A., Maan, V. S., & Sinwar, D. “Efficient and intelligent decision support system for smart irrigation,”Journal of the Nigerian Society of Physical Sciences, pp.945-945, 2022. https://doi.org/10.46481/jnsps.2022.945
[16] R. Meza-Palacios, A. A. Aguilar-Lasserre, L. F. Morales-Mendoza, J. O. Rico-Contreras, L. H. Sánchez-Medel, G. Fernández-Lambert, “Decision support system for NPK fertilization: a solution method for minimizing the impact on human health, climate change, ecosystem quality and resources,” Journal of Environmental Science and Health, Part A, Vol.55, Issue.11, pp.1267-1282, 2020. https://doi.org/10.1080/10934529.2020.1787012
[17] F. B. Tonle, S. Niassy, M. M. Ndadji, M. T. Tchendji, A. Nzeukou, B. T. Mudereri, H. E. Tonnang, “A road map for developing novel decision support system (DSS) for disseminating integrated pest management (IPM) technologies,” Computers and Electronics in Agriculture, Vol.217, pp.1-19, 2024. https://doi.org/10.1016/j.compag.2023.108526
[18] L. A. Zadeh, “Fuzzy logic. In Granular, Fuzzy, and Soft Computing,” New York, NY: Springer US, pp.19-49, 2023. https://doi.org/10.1007/978-1-0716-2628-3_234
[19] R. Calone, A. Fiore, G. Pellis, M. L., Cayuela, G. Mongiano, A. Lagomarsino, S. Bregaglio, “A fuzzy logic evaluation of synergies and trade-offs between agricultural production and climate change mitigation,” Journal of Cleaner Production, Vol.442, pp.1-16, 2024. https://doi.org/10.1016/j.jclepro.2024.140878
[20] T. Caymaz, S. Çal??kan, A. R. Botsal?, “Evaluation of ergonomic conditions using fuzzy logic in a metal processing plant,” International Journal of Computational and Experimental Science and Engineering, Vol.8, Issue.1, pp.19-24, 2022. https://doi.org/10.22399/ijcesen.932994
[21] E. I. Papageorgiou, K. Kokkinos, Z. Dikopoulou, “Fuzzy sets in agriculture. Fuzzy Logic in Its 50th Year: New Developments, Directions and Challenges,” pp.211-233, 2016. https://doi.org/10.1007/978-3-319-31093-0_10
[22] I. Bhakta, S. Phadikar, K. Majumder, “State?of?the?art technologies in precision agriculture: a systematic review,” Journal of the Science of Food and Agriculture, Vol.99, Issue.11, pp.4878-4888, 2019. https://doi.org/10.1002/jsfa.9693
[23] A. Upadhyay, Y. Zhang, C. Koparan, N. Rai, K. Howatt, S. Bajwa, X. Sun, “Advances in ground robotic technologies for site-specific weed management in precision agriculture: A review,” Computers and Electronics in Agriculture, Vol.225, pp.1-22, 2024. https://doi.org/10.1016/j.compag.2024.109363
[24] N., Delavarpour, C., Koparan, J., Nowatzki, S., Bajwa, X. Sun, “A technical study on UAV characteristics for precision agriculture applications and associated practical challenges,” Remote Sensing, Vol.13, Issue.6, pp.2-25, 2021. https://doi.org/10.3390/rs13061204
[25] N. Falco, H. M. Wainwright, B. Dafflon, C. Ulrich, F. Soom, J. E. Peterson, S. S. Hubbard, “Influence of soil heterogeneity on soybean plant development and crop yield evaluated using time-series of UAV and ground-based geophysical imagery,” Scientific reports, Vol.11, Issue.1, pp.7046, 2021. https://doi.org/10.1038/s41598-021-86480-z
[26] M. Pathan, N. Patel, H. Yagnik, M. Shah, “Artificial cognition for applications in smart agriculture: A comprehensive review,” Artificial Intelligence in Agriculture, Vol.4, pp.81-95, 2020. https://doi.org/10.1016/j.aiia.2020.06.001
[27] I. Abbas, J. Liu, M. Faheem, R. S. Noor, S. A. Shaikh, Solangi, K. A., & Raza, S. M.. “Different sensor based intelligent spraying systems in Agriculture,” Sensors and Actuators A: Physical, Vol.316, pp.112265, 2020. https://doi.org/10.1016/j.sna.2020.112265
[28] M. Narayanan, S. Kandasamy, Z. He, S. Kumarasamy, “Ecological impacts of pesticides on soil and water ecosystems and its natural degradation process In Pesticides in the Natural Environment,” Elsevier, pp.23-49, 2022. https://doi.org/10.1016/B978-0-323-90489-6.00002-1
[29] H. A. Issad, R. Aoudjit, J. J. Rodrigues, “A comprehensive review of Data Mining techniques in smart agriculture,” Engineering in Agriculture, Environment and Food, Vol.12, Issue.4, pp.511-525, 2019. https://doi.org/10.1016/j.eaef.2019.11.003
[30] G. Mohyuddin, M. A. Khan, A. Haseeb, S. Mahpara, M. Waseem, A. M. Saleh, “Evaluation of Machine Learning approaches for precision Farming in Smart Agriculture System-A comprehensive Review,” IEEE Access, Vol.12, pp.60155-60184, 2024. https://doi.org/10.1109/ACCESS.2024.3390581
[31] D. Y. Mora-Herrera, S. Guillaume, D. Snoeck, O. Z. Escobar, “A fuzzy logic based soil chemical quality index for cacao,”Computers and Electronics in Agriculture, Vol.177, pp.1-9, 2020. https://doi.org/10.1016/j.compag.2020.105624
[32] E. F. I. Raj, M., Appadurai, K. Athiappan, “Precision farming in modern agriculture. In Smart agriculture automation using advanced technologies: Data analytics and machine learning, cloud architecture, automation and IoT,” Singapore: Springer Singapore pp.61-87, 2022. ISBN : 978-981-16-6123-5
[33] D. Garg, M. Alam, “Smart agriculture: A literature review,” Journal of Management Analytics, Vol.10, Issue.2, pp. 359-415, 2023. https://doi.org/10.1080/23270012.2023.2207184
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.