References
[1] Capilla MV, Olid MNR, Gaya MVO, Botella CR, Ruiz VB. Factors related to survival from oral cancer in an Andalusian population sample. Med Oral Pathol Oral Cir Bucal 2007; 12(7):518-23.
[2] Moore SR, Johnson NW, Pierce AM, Wilson DF. The epidemiology of mouth cancer: a review of global incidence. Oral Dis 2000; 6(2):65-74
[3] Chen PH, Shieh TY, Ho PS, Tsai CC, Yang YH, Lin YC, et al. Prognostic factor associated with the survival of oral and pharyngeal carcinoma in Taiwan. BMC Cancer 2007; 7:101.
[4]González AP, López MA, Martínez LV. Comportamiento clínico y epidemiológico del cáncer de cavidad oral. Hospital Oncológico Provincial Docente María Curie. Instituto Superior de Ciencias Médicas Dr. Carlos Juan Finlay; 2005.
[5] Kingsley K, O‟Malley S, Ditmyer M, Chino M. Analysis of oral cancer epidemiology in the US reveals state-specific trends: implication for oral cancer prevention. BCM Public Health 2008; 8:87.
[6] Napier SS, Speight PM. Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med 2008; 37:1-10.
[7] Cho WSC. Contribution of oncoproteomics to cancer 2. biomarker discovery. Mol Cancer 2007; 6 : 25.
[8] J. K. Elango, P. Gangadharan, S. Sumithra, and M. A. Kuriakose, “Trends of head and neck cancers in urban and rural India,” Asian Pacific Journal of Cancer Prevention, vol. 7, no. 1, pp. 2006; 108–112.
[9] R. Sankaranarayanan, K. Ramadas, G. Thomas et al., “Effect of screening on oral cancer mortality in Kerala, India: a clusterrandomised controlled trial,” The Lancet, vol. 365, no. 9475, pp. 1927–1933, 2005.
[10] Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN 2008 v 2.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 10 [Internet]. Lyon, France: International Agency for Research on Cancer; 2010. Available from: http://globocan.iarc.
[11] National Institutes of Health Updated October 2010.
[12] Logothetidis S. Nanotechnology in medicine: the medicine of tomorrow and nanomedicine. Hippokratia 2006; 10: 7-21.
[13] Bonoiu A, Mahajan SD, Ye L, Kumar R, Ding H, Yong K-T, et al. MMP-9 gene silencing by a quantum dot-siRNA nanoplex delivery to maintain the integrity of the blood brain barrier. Brain Research. 2009; 1282: 142-55.
[14] Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Letters. 2010; 10: 3223-30.
[15] Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, et al. Microfluidic Platform for Controlled Synthesis of Polymeric Nanoparticles. Nano Letters. 2008; 8: 2906-12.
[16] Joseph K, Robert L. Responsive polymeric delivery systems. Advanced Drug Delivery Reviews. 2001;6: 19-50.
[17]Alexis F, Rhee J-W, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC. New frontiers in nanotechnology for cancer treatment. Urologic Oncology: Seminars and Original Investigations. 2008;26: 74-85.
[18] Howarth M, Takao K, Hayashi Y, Ting A.Y. Targeting the quantum dots to the surface proteins in living cells with biotin ligases. Proc. Natl. Acad. Sci. USA 2005; 102: 7583-88.
[19]Chen, Y., Lian, G., Liao, C., Wang, W., Zeng, L., Qian, C., . . . Shuai, X. (2013). Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION). Journal of Gastroenterology, 48(7), 809-821. doi: 10.1007/s005350120713x 10.1016/j.jconrel.2006.05.023)Google
[20] Cheng, Z., Elias, D. R., Kamat, N. P., Johnston, E. D., Poloukhtine, A., Popik, V., . . . Tsourkas, A. (2011). Improved tumor targeting of polymer-based nanovesicles using polymer-lipid blends. Bioconjug Chem, 22(10), 2021-2029. doi: 10.1021/bc200214g
[21] Chetan C. Anajwala, G. K. J., S.M. Vijayendra Swamy. (2010). Current Trends of Nanotechnology for Cancer Therapy. International Journal of Pharmaceutical Sciences and Nanotechnology, 3(3), 1043-1056.
[22] Choi, Y. E., Kwak, J. W., & Park, J. W. (2010). Nanotechnology for early cancer detection. Sensors (Basel), 10(1), 428-455. doi: 10.3390/s100100428
[23] Cridge, B. J., Larsen, L., & Rosengren, R. J. (2013). Curcumin and its derivatives in breast cancer: Current developments and potential for the treatment of drug-resistant cancers. Oncology Discovery, 1(1), 6. doi: 10.7243/2052-6199-1-6.
[24] Yan, J., Zheng, X., Liu, Z., Yu, J., Deng, Z., Xue, F., . . . Li, G. (2016). A multicenter study of using carbon nanoparticles to show sentinel lymph nodes in early gastric cancer. Surg Endosc, 30(4), 1294-1300. doi: 10.1007/s00464-015-4358-8
[25] Ye, M. X., Li, Y., Yin, H., & Zhang, J. (2012). Curcumin: updated molecular mechanisms and intervention targets in human lung cancer. Int J Mol Sci, 13(3), 3959-3978. doi: 10.3390/ijms13033959
[26] Ying Wu, W. W., Yinting Chen, Kaihong Huang, Xintao Shuai, Qikui Chen, Xuexian Li, Guoda Lian. (2010). The investigation of polymer-siRNA nanoparticle for gene therapy of gastric cancer in vitro. Int J Nanomedicine, 5, 129-136.
[27] Yun-Peng Zhang, P. S., Xu-Rui Zhang, Wu-Li Yang and Cheng-Shuai Si. (2013). Synthesis of CdTe quantum dot-conjugated CC49 and their application for in vitro imaging of gastric adenocarcinoma cells. Nanoscale Res Lett, 8.
[28] Zhang, W., Zhang, Z., & Zhang, Y. (2011). The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett, 6, 555. doi: 10.1186/1556-276X6-555
[29] Zhang, Z., Niu, B., Chen, J., He, X., Bao, X., Zhu, J., . . . Li, Y. (2014). The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials, 35(15), 4565-4572. doi: 10.1016/j.biomaterials.2014.02.024.
[30] Thakor, A. S., & Gambhir, S. S. (2013). Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin, 63(6), 395-418. doi: 10.3322/caac.21199
[31] Thomas, D. G., Pappu, R. V., & Baker, N. A. (2011). NanoParticle Ontology for cancer nanotechnology research. J Biomed Inform, 44(1), 59-74. doi: 10.1016/j.jbi.2010.03.001
[32] Tokuhara, T., Tanigawa, N., Matsuki, M., Nomura, E., Mabuchi, H., Lee, S. W., . . . Narabayashi, I. (2008). Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO): diagnostic performance in post-contrast images using new diagnostic criteria. Gastric Cancer, 11(4), 194-200. doi: 10.1007/s10120-008-0480-9
[33] Trickler, W. J., Khurana, J., Nagvekar, A. A., & Dash, A. K. (2010). Chitosan and glyceryl monooleate nanostructures containing gemcitabine: potential delivery system for pancreatic cancer treatment. AAPS PharmSciTech, 11(1), 392-401. doi: 10.1208/s12249- 010-9393-0
[34] Veiseh, O., Kievit, F. M., Ellenbogen, R. G., & Zhang, M. (2011). Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. Adv Drug Deliv Rev, 63(8), 582-596. doi: 10.1016/j.addr.2011.01.010
[35] Vergaro, V., Scarlino, F., Bellomo, C., Rinaldi, R., Vergara, D., Maffia, M., . . . Leporatti, S. (2011). Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. Adv Drug Deliv Rev, 63(9), 847-864. doi: 10.1016/j.addr.2011.05.007
[36] Vladimir N. Anisimov, I. A. V., Andrei V. Panchenko1, Irina G. Popovich and, & Zabezhinski, M. A. (2012). Light-at-Night-Induced Circadian Disruption, Cancer and Aging Current Aging Science, 5, 170-177.
[37] Wang, J. J., Zeng, Z. W., Xiao, R. Z., Xie, T., Zhou, G. L., Zhan, X. R., & Wang, S. L. (2011). Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine, 6, 765-774. doi: 10.2147/IJN.S17296.