Abstract
XRD of six biologically important copper (II) complexes having urea as a primary ligand and sulphate, nitrate, acetate and chloride as secondary ligands have been studied using Bruker D8 Advance diffractometer at IUC, Indore. The synthesized metal complexes were characterized by XRD measurements in order to elucidate their geometry. The data obtained has been preceding using XRD data analysis program Origin 6.0 Professional. From the experimental measurements, various parameters, e.g., particle size, lattice parameter have been estimated. The XRD analysis revealed the crystalline nature of all the complexes.
Key-Words / Index Term
XRD, Copper Complexes, Urea
References
[1]. J.R.J Sorenson. 1982. In Metal Ions in Biological Systems. Edited by H. Sigel and Marcel Dekker. New York. 14: 77-124.
[2]. Bojankozlevkar Ninalahi, Simeon Makuc, Primoz Segedin. 2000. Copper (II) carboxylates synthesis structure and biological activity IV. Fatty acid copper (II) carboxylates with urea Acta Chim Slov. 47: 421-434.
[3]. B.A Richardson. 1993. Wood Preservation. Second Edition; E & FN Spon an imprint of Chapman & Hall London.
[4]. V.I Prisakar, V.I Tsapkor, S.A Buracheva, M.S Bryke and A.P Gulya. 2006. Synthesis and Antimicrobial Activity of Cordination Compounds of Copper with substituted salicyaldehyde thiosemicabazones. Pharmaceutical Chemistry Journal. Vol. 39, 6, 2005.
[5]. Premkumar, Tand and Govindarajan S. 2005. Antimicrobial study of pyrazine, pyrazole and imidazole carboxylic acids and their hydrazinium salts. World Journal of Microbiology. 21: 479-480 .
[6]. D. Feldman, A. Barbalata, “Synthetic Polymers”, Chapman & Hall, London (1996).
[7]. I. L. Finar, “Organic Chemistry”, Longman group limited, London (1973) P. 460.
[8]. M. J. Rahman, P. Bozadjiev and Y. Polovski, fert. Res., 38(2) (1994) 89.
[9]. S. George, M. Chellapandian, B. Sivasankar, K. Jayaraman, Bioprocess Eng., 16(2) (1997) 83.
[10]. X. J. Wang, L.A. Douglas, Agrochimica, 40(5-6) (1996) 209.
[11]. O. A. Yerokun, S. Afr. J. plant soil, 14(2) (1997) 63.
[12]. R. Heinig, SOFW J., 122(14) (1996) 998.
[13]. C. T. Gnewuch, G. Sosnovsky, Chem. Rev., 97(3) (1997) 829.
[14]. C. I. Miyagawa, Drug Intell. & Clin. Pharma., 20 (1986) 527.
[15]. E. Kissa, Text. Res. J., 39(8) (1969) 734.
[16]. I. Srinivasa, K. Vishivanathapuram, M. B. Mishra, S. K. Ghosh, Technology, 7(12) (1970) 27.
[17]. I. M. Kaganskii, A. M. Babenko, Zh. Prikl. Khim., 43(11) (1970) 2390.
[18]. Y. Zhang, J. Bai, T. Wei, A. Lu, Huaxue Shijie, 37(4) (1996) 178.
[19]. [19]Y.K. Kim, J.W. Williard, A.W. Frazier, J. Chem. Eng. Data, 33(3) (1988) 306.
[20]. Hu. Chuncong, Chem. Abs., 113, 888 (1990).
[21]. A.D. Pandey, L. Singh, R. Yadav, K. M. Varma, Chem. Abs., 118 (1993) 607.
[22]. A. Crispoldi, Chem. Abs., 119 (1993) 831.
[23]. M. Sugimura, Y. Kameyama, T. Hashimoto, T. Kobayashi, S. Muramatsu. Chem. Abs., 112 (1990) 63.
[24]. B. Barlic, Spectrochim. Acta, Part A, 32 (1976) 693.
[25]. W. F. Boron and E. L. Boulpaep, Medical Physiology, Updated Edition, Saunders, Philadelphia, Pa, USA, 2004.
[26]. J. H. Meessen and H. Petersen, “Urea,” in Ullmann’s Encyclopedia of Industrial Chemistry, Electronic Release,Wiley-VCH, Weinheim, Germany, 6th edition, 2002.