References
[1] Z.R. Wasilewski, et al. “Size and shape engineering of vertically stacked self-assembled quantum dots,” Journal of Crystal Growth, 201-202 (Supplement C), pp. 1131-1135,1999
[2] A. Sabeur, et al. “Numerical modeling of shape and size dependent intermediate band quantum dot solar cell,” Int Conf Opt Instrum Technol, 9624, p. 10, 2015
[3] A. Imran, et al. “Size and shape dependent optical properties of InAs quantum dots,” Int Conf Opt Instrum Technol, 2018
[4] O.P. Pchelyakov, et al. “Molecular beam epitaxy of silicon–germanium nanostructures: Thin Solid Films”, 367 (1), pp. 75-84, 2000
[5] A.M. Vadim, “Optics of nanostructured materials,” Meas Sci Technol, 12 (9), p. 1607, 2001
[6] J.L. Liu, et al. “Observation of inter-sub-level transitions in modulation-doped Ge quantum dots,” Appl Phys Lett, 75 (12), pp. 1745-1747, 1999
[7] M. Bayer, et al. “Coupling and entangling of quantum states in quantum dot molecules,” Science, 291 (5503), pp. 451-453, 2001
[8] G. Burkard, et al. “Spin interactions and switching in vertically tunnel-coupled quantum dots,” Phys Rev B, 62 (4), pp. 2581-2592, 2000
[9] R. Leon, et al. “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys Rev B, 58 (8), pp. R4262-R4265, 1998
[10] D. L. Smith, C. Mailhiot, “Theory of semiconductor superlattice electronic structure,” Rev. Mod. Phys. 62,1990.
[11] A. Y. Shik, “Superlattices – periodic semiconductor structures,” Sov. Phys. Semicond. 8 (1975) 1195, [Fiz. Tekh. Poluprov.8, 1841,1974.
[12] H. T. Grahn (Ed.), “Semiconductor Superlattices, Growth and Electronic Properties,” World Scientific, Singapore, 1995
[13] S. Birner, “Modeling of Semiconductor Nanostructures and Semiconductor-Electrolyte Interfaces,” 2011.
[14] A.I. Onyia, H.I. Ikeri, “Theoretical Study of Quantum Confinement Effect on Quantum Dots Using Particle in a Box Model”. Journal of Ovonic Research, 14 (1): 49 – 54, 2018
[15] H. Ikeri, A. Onyia, “Theoretical Investigation of Size Effect on Energy Gap of Quantum Dots Using Particle in a Box Model,” Chalcogenide Letters, 14(2): 49 – 54, 2017
[16] Wang, et al. “Theory and applications of band-aligned superlattices” IEEE J Quantum Electron, 25 (1), pp. 12-19, 1989
[17] E. L. Ivchenko, G. Pikus, “Superlattices and other Heterostructures,” Springer, Berlin, 1995
[18] M. Helm, “Infrared spectroscopy and transport of electrons in semiconductor superlattices”, Semicond. Sci. Technol. 10, 1995
[19] O.L. Lazarenkova Miniband, “Formation in a quantum dot crystal,” J Appl Phys, 89 (10), pp. 5509-5515, 2001
[20] Y. Peter, C. Manuel, “Fundamentals of Semiconductors, Physics and Materials Properties,” Springer, 3: pp. 540-583, 1996
[21] P.A. Knipp, T.L. Reinecke, “Solid-State Electronics”, 40: pp. 343 – 347, 1996
[22] R.V.N. Melnik, et al. “Bandstructures of conical quantum dots with wetting layers,” Nanotechnology, 15 (1) 2004
[23] I. Vurgaftman, et al. “Band parameters for III–V compound semiconductors and their alloys,” J Appl Phys, 89 (11), pp. 5815-5875, 2001
[24] H. Johan, et al. “Reversal of zeeman splitting in InGaAs/InP quantum wires in high magnetic field,” J Appl Phys, 1997
[25] A.S.G. Thornton, et al. “Observation of spin splitting in single InAs self-assembled quantum dots in AlAs,” Appl Phys Lett, 73 (3), pp. 354-356, 1998
[26] O. L. Lazarenkova, A. A. Balandin, “Miniband formation in a quantum dot crystal,” Journal of Applied Physics, vol. 89, no. 10, pp. 5509–5515, 2001.
[27] Imran A, Jiang J, Eric D, Zahid MN, Yousaf M, Shah ZH. “Optical properties of InAs/GaAs quantum dot superlattice structures,” Results in Phys; 9:297–302, 2018
[28] S. Bandyopadhyay, et al. “Electrochemically assembled quasi-periodic quantum dot arrays,” Nanotechnology, 7 (4), p. 360, 1996
[29] Z. Zhang, et al. “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell`s equations,” Phys Rev Lett, 65 (21), pp. 2650-2653, 1990
[30] A. Imran, D. Eric, J. Jiang, “Optical properties of InAs/GaAs quantum dot superlattice structures,” Results in physics Volume 9, pp. 297-302, 2018
[31] D. Eric, J. Jiang, A. Imran, “Optical properties of InN/GaN quantum dot superlattice by changing dot size and interdot spacing,” Results in physics, Vol. 13, pp. 297-302, 2019
[32] A.J. Dekker, “Solid State Physics”; Prentice-Hall: Engle wood Cliffs, NJ, 1962
[33] C. Kittell, “Quantum Theory of Solids,” John Wiley and Sons: New York, 1976.
[34] F. Bloch, "Über die Quanten mechanik der Elektronen in Kristallgittern". Zeitschrift für Physik (in German). Springer Science and Business Media LLC. 52 (7–8), 1929
[35] D. L. Kronig, R., Penney, W. G. "Quantum Mechanics of Electrons in Crystal Lattices" Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. The Royal Society. 130 (814): 499–513.1931
[36] A. Franciosi. “Heterojunction band offset engineering,” Surface Science Report, pp. Vol. 25, No. 1, 1996
[37] J. W. Harald, Müller-Kirsten, “Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed.,” World Scientific, 325–329, 458–477, 2012
[38] I. Vurgaftman, et al. “Band parameters for III–V compound semiconductors and their alloys,” J Appl Phys, 89 (11), pp. 5815-5875, 2001
[39] P.G. Linares, et al. “III-V compound semiconductor screening for implementing quantum dot intermediate band solar cells,” J Appl Phys, 109 (1), 2011
[40] M. Y. Levy, C. Honsberg, A. Marti, and A. Luque, “Quantum Dot Intermediate Band Solar Cell Material Systems with Negligible Valence Band Offsets,” Proceedings of the 31st IEEE Photovoltaic Specialists Conference, IEEE, New Jersey, pp. 90–93, 2005.
[41] P. Hervé, et al. “General relation between refractive index and energy gap in semiconductors,” Infrared Phys Technol, 35 (4) (1994), pp. 609-615