Full Paper View Go Back

Novel Synthesis of Optical, Photoluminescence Properties and Supercapacitor Application on Zn2+ doping Sn1-xZnxO2 nanoparticles

S. Sivakumar1 , E. Manikandan2

Section:Research Paper, Product Type: Isroset-Journal
Vol.6 , Issue.6 , pp.1-13, Dec-2018


CrossRef-DOI:   https://doi.org/10.26438/ijsrpas/v6i6.113


Online published on Dec 31, 2018


Copyright © S. Sivakumar, E. Manikandan . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: S. Sivakumar, E. Manikandan, “Novel Synthesis of Optical, Photoluminescence Properties and Supercapacitor Application on Zn2+ doping Sn1-xZnxO2 nanoparticles,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.6, Issue.6, pp.1-13, 2018.

MLA Style Citation: S. Sivakumar, E. Manikandan "Novel Synthesis of Optical, Photoluminescence Properties and Supercapacitor Application on Zn2+ doping Sn1-xZnxO2 nanoparticles." International Journal of Scientific Research in Physics and Applied Sciences 6.6 (2018): 1-13.

APA Style Citation: S. Sivakumar, E. Manikandan, (2018). Novel Synthesis of Optical, Photoluminescence Properties and Supercapacitor Application on Zn2+ doping Sn1-xZnxO2 nanoparticles. International Journal of Scientific Research in Physics and Applied Sciences, 6(6), 1-13.

BibTex Style Citation:
@article{Sivakumar_2018,
author = {S. Sivakumar, E. Manikandan},
title = {Novel Synthesis of Optical, Photoluminescence Properties and Supercapacitor Application on Zn2+ doping Sn1-xZnxO2 nanoparticles},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {12 2018},
volume = {6},
Issue = {6},
month = {12},
year = {2018},
issn = {2347-2693},
pages = {1-13},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1010},
doi = {https://doi.org/10.26438/ijcse/v6i6.113}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i6.113}
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1010
TI - Novel Synthesis of Optical, Photoluminescence Properties and Supercapacitor Application on Zn2+ doping Sn1-xZnxO2 nanoparticles
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - S. Sivakumar, E. Manikandan
PY - 2018
DA - 2018/12/31
PB - IJCSE, Indore, INDIA
SP - 1-13
IS - 6
VL - 6
SN - 2347-2693
ER -

1013 Views    815 Downloads    258 Downloads
  
  

Abstract :
In this research on (0.00, 0.025, 0.045, 0.065 M %) Zn/SnO2 nanoparticles have been prepared effectively chemical precipitation route on different doping concentration of zinc from 0.00 to 0.065%. XRD results showed the crystalline nature for different doping concentrations that are existed as a tetragonal structure. HR-TEM investigation of pictures confirms the presence of very little, homogeneously dispersed, and spherical shapes are observed. The crystallite size is calculated using the Scherrer formula and was formed in the size of nanoparticles range from 11.6 nm to 42.0 nm. The presence of dopant (i.e. Zn) and arrangement of Sn to O phase and hydrous nature of Zn/SnO2 nanoparticles are confirmed by EDX and FTIR (O-Sn-O stretching) investigations. The band gap value is observed from 3.20 eV to 3.50 eV in undoped and Zn/SnO2 nanoparticles, Due to the large grain size. The grains size develops so deformity density decreases and increases crystalllinity. These defects act as luminescent focuses and cause a decrease in emission intensity and increase in the band gap. The cyclic voltammetry investigation is a specific capacitance value, calculate as 496 F/g and 572 F/g was obtained at a scan rate 5 mV/s for undoped and (0.025 M %) Zn/SnO2 nanoparticles it’s suitable for supercapacitor applications

Key-Words / Index Term :
Zn/ nanoparticles, XRD, SEM, HR-TEM, UV-DRS, PL and CV

References :
[1] B. E. Conway, “Electrochemical supercapacitors: scientific fundamentals and technological applications”. Springer Science & Business Media, 2013.
[2] D. BĂ©langer, X. Ren, J. Davey, F. Uribe, Shimshon Gottesfeld. "Characterization and long‐term performance of polyaniline‐based electrochemical capacitors," Journal of theElectrochemicalSociety, Vol.147, No.8, pp.2923-2929, 2000. https://doi.org/10.1149/1.1393626
[3] F.Fusalba, P. Gouérec, D. Villers, and D. Bélanger, "Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors," Journal of the Electrochemical Society, Vol.148, No.1 pp.A1-A6, 2001. https://doi.org/10.1149/1.1339036
[4] J. P. Zheng, P. J. Cygan, T. R. Jow, "Hydrous ruthenium oxide as an electrode material for electrochemical capacitors," Journal of the Electrochemical Society Vol.142, No.8, pp.2699-2703, 1995. https://doi.org/10.1149/1.2043984
[5] J. K. Chang, W. T. Tsai, "Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors," Journal of the Electrochemical Society, Vol.150, No.10, pp.A1333-A1338, 2003. https://doi.org/10.1149/1.1605744
[6] Kim,Il-Hwan, K. B. Kim, "Ruthenium oxide thin film electrodes for supercapacitors," Electrochemical and Solid-State Letters, Vol.4, No.5 pp.A62-A64, 2001. https://doi.org/10.1149/1.1359956
[7] H. C. Chiu, C. S. Yeh, "Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol," The Journal of Physical Chemistry C, Vol.111, No.20, pp.7256-7259, 2007. https://doi.org/10.1021/jp0688355
[8] D. N. Srivastava, S. Chappel, O. Palchik, A. Zaban, A. Gedanken, "Sonochemical synthesis of mesoporous tin oxide," Langmuir Vol.18, No.10, pp.4160-4164, 2002. https://doi.org/10.1021/la015761+
[9] J. Zhu, Z. Lu, S. T. Aruna, D. Aurbach, A. Gedanken. "Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes," Chemistry of Materials, Vol.12, No.9, pp.2557-2566, 2000. https://doi.org/10.1021/cm990683l
[10] H. Jin, Y. Xu, G. Pang, W. Dong, Q. Wan, Y. Sun, S. Feng, "Al-doped SnO2 nanocrystals from hydrothermal systems," Materials chemistry and physics, Vol.85, No.1, pp.58-62, 2004. https://doi.org/10.1016/j.matchemphys.2003.12.006
[11] J. Hays, A. Punnoose, R. Baldner, Mark H. Engelhard, J. Peloquin, K. M. Reddy, "Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles," Physical Review B, Vol.72, No.7, pp.075203, 2005. https://doi.org/10.1103/PhysRevB.72.075203.
[12] Wu, Nae-Lih, "Nanocrystalline oxide supercapacitors," Materials Chemistry and Physics, Vol.75, No.1-3, pp.6-11, 2002. https://doi.org/10.1016/S0254-0584(02)00022-6
[13] A. A. Ismail, A. El-Midany, E. A. Abdel-Aal, H. El-Shall, "Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique." Materials Letters, Vol.59, No.14-15, pp.1924-1928, 2005. https://doi.org/10.1016/j.matlet.2005.02.027
[14] M. M. Rashad, A. A. Ismail, I. Osama, I. A. Ibrahim, Abdel-Hakim T. Kandil. "Photocatalytic decomposition of dyes using ZnO doped SnO2 nanoparticles prepared by solvothermal method," Arabian Journal of Chemistry, Vol.7, No.1, pp.71-77, 2014. https://doi.org/10.1016/j.arabjc.2013.08.016
[15] A. Enesca, L. Andronic, A. Duta, "Optimization of opto-electrical and photocatalytic properties of SnO2 thin films using Zn2+ and W6+ dopant ions." Catalysis letters, Vol.142, No.2, pp.224-230, 2012. https://doi.org/10.1007/s10562-011-0762-4
[16] A. L. Patterson, "The Scherrer formula for X-ray particle size determination," Physical review, Vol.56, No.10, pp.978, 1939. https://doi.org/10.1103/PhysRev.56.978.
[17] J.Wang, H. Fan, H. Yu, "Synthesis of Hierarchical Porous Zn-Doped SnO2 Spheres and Their Photocatalytic Properties," Journal of Materials Engineering and Performance, Vol.24, No.11, pp.4260-4266, 2015. https://doi.org/10.1007/s11665-015-1745-1
[18] Sagadevan, Suresh, J. Podder. "Investigation on structural, surface morphological and dielectric properties of
Zn-doped SnO2 nanoparticles," Materials Research, Vol.19, No.2 pp.420-425, 2016. http://dx.doi.org/10.1590/1980-5373-MR-2015-0657
[19] R. Bargougui, A. Oueslati, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, F. Hlel, S. Ammar, A. Dinia, "Structural, optical and electrical properties of Zn-doped SnO2 nanoparticles synthesized by the co-precipitation technique," Journal of Materials Science: Materials in Electronics, Vol.25, No.5, pp.2066-2071, 2014. https://doi.org/10.1007/s10854-014-1841-2
[20] D.Amalric-Popescu, F. Bozon-Verduraz, "Infrared studies on SnO2 and Pd/SnO2," Catalysis today, Vol.70, No.1-3, pp.139-154, 2001. https://doi.org/10.1016/S0920-5861(01)00414-X
[21] S. Zulfiqar, Z. Iqbal, Jianguo Lü, "Zn–Cu-codoped SnO2 nanoparticles: Structural, optical, and ferromagnetic behaviors," Chinese Physics B, Vol.26, No.12, pp.126104, 2017. https://doi.org/10.1088/1674-1056/26/12/126104
[22] S. Mehraj, M. Shahnawaze Ansari, "Rutile-type Co doped SnO2 diluted magnetic semiconductor nanoparticles: structural, dielectric and ferromagnetic behavior," Physica B: Condensed Matter, Vol.430, pp.106-113, 2013. https://doi.org/10.1016/j.physb.2013.08.024
[23] Y. Yuan, Q. Jiang, J. Yang, L. Feng, W. Wang, Z. Ye, J. Lu, "Variation in luminescence and bandgap of Zn-doped SnO2 nanoparticles with thermal decomposition," Journal of Materials Science: Materials in Electronics, Vol.27, No.9 pp.9541-9549, 2016. https://doi.org/10.1007/s10854-016-5006-3
[24] E. A. Davis, NFf Mott, "Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors," Philosophical Magazine, Vol.22, No.179 pp.0903-0922, 1970. https://doi.org/10.1080/14786437008221061
[25] G. Yang, Z. Yan, T. Xiao, "Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity" Applied surface science, Vol.258, No.22 pp.8704-8712, 2012. https://doi.org/10.1016/j.apsusc.2012.05.078
[26] N. Shanmugam, T. Sathya, G. Viruthagiri, C. Kalyanasundaram, R. Gobi, and S. Ragupathy, "Photocatalytic degradation of brilliant green using undoped and Zn doped SnO2 nanoparticles under sunlight irradiation," Applied Surface Science, Vol.360, pp.283-290, 2016. https://doi.org/10.1016/j.apsusc.2015.11.008
[27] A.Sharma, M. Varshney, S. Kumar, K. D. Verma, Ravi Kumar, "Magnetic properties of Fe and Ni doped SnO2 nanoparticles," Nanomaterials and Nanotechnology, Vol.1, pp.29-33, 2011. https://doi.org/10.5772/50948
[28] S.Nilavazhagan, S. Muthukumaran, M. Ashokkumar. "Cu-doping effect on the structural, optical and photoluminescence properties of Sn0.98Cr0.02O2 nanoparticles by co-precipitation method," Journal of Materials Science: Materials in Electronics, Vol.24, No. 7, pp.2581-2592, 2013. https://doi.org/10.1007/s10854-013-1137-y
[29] B. Xu, X. G. Ren, G. R. Gu, L. L. Lan, B. J. Wu, "Structural and optical properties of Zn-doped SnO2 films prepared by DC and RF magnetron co-sputtering" Superlattices and Microstructures, Vol.89, pp.34-42, 2016. https://doi.org/10.1016/j.spmi.2015.10.043
[30] W. B.Soltan, M. Mbarki, S. Ammar, O. Babot, T. Toupance, "Structural and optical properties of vanadium doped SnO2 nanoparticles synthesized by the polyol method," Optical Materials. Vol.54, pp.139-146, 2016. https://doi.org/10.1016/j.optmat.2016.01.059
[31] S.Ghosh, D. De Munshi, K. Mandal, "Paramagnetism in single-phase Sn1−xCoxO2 dilute magnetic semiconductors," Journal of Applied Physics, Vol.107, No.12 pp.123919, 2010. https://doi.org/10.1063/1.3437641
[32] S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, P. K. Chu, "Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts," Nanotechnology, Vol.17, No.6, pp.1695, 2006. https://doi.org/10.1088/0957-4484/17/6/025
[33] L. Z. Liu, X. L. Wu, J. Q. Xu, T. H. Li, J. C. Shen, P. K. Chu, "Oxygen-vacancy and depth-dependent violet double-peak photoluminescence from ultrathin cuboid SnO2 nanocrystals," Applied Physics Letters, Vol.100, No.12 pp.121903, 2012. https://doi.org/10.1063/1.3696044
[34] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," Journal of Applied Physics, Vol.79, No.10, pp.7983-7990, 1996. https://doi.org/10.1063/1.362349
[35] P. S. Shajira, M. Junaid Bushiri, Bini B. Nair, V. Ganeshchandra Prabhu, "Energy band structure investigation of blue and green light emitting Mg doped SnO2 nanostructures synthesized by combustion method." Journal of Luminescence, Vol.145, pp.425-429, 2014. https://doi.org/10.1016/j.jlumin.2013.07.073
[36] J. Ni, X. Zhao, X. Zheng, J. Zhao, B. Liu, "Electrical, structural, photoluminescence and optical properties of p-type conducting, antimony-doped SnO2 thin films," Acta Materialia, Vol.57, No.1, pp.278-285, 2009. https://doi.org/10.1016/j.actamat.2008.09.013
[37] L.Ding, Andy Eu-Jin Lim, Jason Tsung-Yang Liow, M. B. Yu, G-Q. Lo, "Dependences of photoluminescence from
P-implanted epitaxial Ge," Optics Express, Vol.20, No.8, pp.8228-8239, 2012. https://doi.org/10.1364/OE.20.008228
[38] T. Ungár, "Microstructural parameters from X-ray diffraction peak broadening," Scripta Materialia, Vol.51, No.8, pp.777-781, 2004. https://doi.org/10.1016/j.scriptamat.2004.05.007
[39] G. Y. Zhao, C. L. Xu, H. L. Li, "Highly ordered cobalt-manganese oxide (CMO) nanowire array thin film on Ti/Si substrate as an electrode for electrochemical capacitor," Journal of power sources, Vol.163, No.2 pp.1132-1136, 2007. https://doi.org/10.1016/j.jpowsour.2006.09.085
[40] Ramachandran, Rajendran, Sathiyanathan Felix, G. M. Joshi, Bala PC Raghupathy, S. K. Jeong, A. N. Grace, "Synthesis of graphene platelets by chemical and electrochemical route," Materials Research Bulletin, Vol.48, No.10 pp.3834-3842, 2013. https://doi.org/10.1016/j.materresbull.2013.05.085
[41] S. C. Pang, B. H. Wee, S. F. Chin, "The capacitive behaviors of manganese dioxide thin-film electrochemical capacitor prototypes," International Journal of Electrochemistry, Vol.2, pp.1–10, 2011. http://dx.doi.org/10.4061/2011/397685
[42] D.Deng, J. Y. Lee, "Hollow core–shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage," Chemistry of Materials, Vol.20, No.5 pp.1841-1846, 2008. https://doi.org/10.1021/cm7030575
[43] K. R. Prasad, N. Miura, "Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors," Electrochemistry communications, Vol.6, No.8, pp.849-852, 2004. https://doi.org/10.1016/j.elecom.2004.06.009
[44] P.Sivagurunathan, S. R. Gibin, "Preparation and characterization of nickel ferrite nanoparticles by co-precipitation method with citrate as chelating agent," Journal of Materials Science: Materials in Electronics, Vol.27, No.3 pp.2601-2607, 2016. https://doi.org/10.1007/s10854-015-4065-1
[45] P.He, Z. Xie, Y. Chen, F. Dong, H. Liu. "Co2SnO4/activated carbon composite electrode for supercapacitor," Materials Chemistry and Physics, Vol.137, No.2 pp.576-579, 2012. https://doi.org/10.1016/j.matchemphys.2012.10.004
[46] R. K. Selvan, I. Perelshtein, N. Perkas, Aharon Gedanken, "Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@ C nanocomposites for electrochemical redox supercapacitors." The Journal of Physical Chemistry C Vol.112, No.6 pp.1825-1830, 2008. https://doi.org/10.1021/jp076995q

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation