Full Paper View Go Back
Shirsh Lata Soni1 , R. S. Gupta2 , P.L. Varma3
Section:Research Paper, Product Type: Isroset-Journal
Vol.6 ,
Issue.6 , pp.94-103, Dec-2018
CrossRef-DOI: https://doi.org/10.26438/ijsrpas/v6i6.94103
Online published on Dec 31, 2018
Copyright © Shirsh Lata Soni, R. S. Gupta, P.L. Varma . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Shirsh Lata Soni, R. S. Gupta, P.L. Varma, “Study the features of ICME/shock associated with Geomagnetic storms during ascending phase of solar cycle 23 and 24,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.6, Issue.6, pp.94-103, 2018.
MLA Style Citation: Shirsh Lata Soni, R. S. Gupta, P.L. Varma "Study the features of ICME/shock associated with Geomagnetic storms during ascending phase of solar cycle 23 and 24." International Journal of Scientific Research in Physics and Applied Sciences 6.6 (2018): 94-103.
APA Style Citation: Shirsh Lata Soni, R. S. Gupta, P.L. Varma, (2018). Study the features of ICME/shock associated with Geomagnetic storms during ascending phase of solar cycle 23 and 24. International Journal of Scientific Research in Physics and Applied Sciences, 6(6), 94-103.
BibTex Style Citation:
@article{Soni_2018,
author = {Shirsh Lata Soni, R. S. Gupta, P.L. Varma},
title = {Study the features of ICME/shock associated with Geomagnetic storms during ascending phase of solar cycle 23 and 24},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {12 2018},
volume = {6},
Issue = {6},
month = {12},
year = {2018},
issn = {2347-2693},
pages = {94-103},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1020},
doi = {https://doi.org/10.26438/ijcse/v6i6.94103}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i6.94103}
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1020
TI - Study the features of ICME/shock associated with Geomagnetic storms during ascending phase of solar cycle 23 and 24
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - Shirsh Lata Soni, R. S. Gupta, P.L. Varma
PY - 2018
DA - 2018/12/31
PB - IJCSE, Indore, INDIA
SP - 94-103
IS - 6
VL - 6
SN - 2347-2693
ER -
Abstract :
In this presented work we study the characteristics, features and occurrence rates of Interplanetary Coronal Mass Ejections (ICMEs) and interplanetary shock during the rising phase of solar cycle 23 (January 1996–December 2000) and 24 (January 2008– December 2012). In particular, we give a detailed list of such events, in this given list, based on in situ observations, we consist a subsets of interplanetary shock, ICMEs and magnetic clouds corresponding with intense/ super-intense geomagnetic storms. Here we select total 67 geomagnetic storm events (50 events for solar cycle 23 and 17 events for solar cycle 24) which have Dst ≤ -75 nT. In our analysis we found that there were differences in the general properties of ICMEs between the SC 24 rising phase and same phase of the solar cycle 23. It is concluded that the geomagnetic storms during solar cycle 23 and 24 are such intense due to four major interplanetary structures (Interplanetary shock, ICMEs and magnetic clouds, southward component of IP magnetic field). On the comparison of solar cycle 23 and 24, we observed that the during the rise phase (first 5 years) of solar cycle 24, the Geomagnetic activity levels were lower than the comparable period of solar cycle 23 and ICME activities were less in the sunspot cycle 24 compared to cycle 23 during rising phase.
Key-Words / Index Term :
Coronal Mass Ejections, Interplanetary shock, ICME, Geomagnetic storms
References :
[1] Richardson, I. G., and H. V. Cane, “Signatures of shock drivers in the solar wind and their dependence on the solar source location”, J. Geophys. Res.,98, 15,295, 1993.
[2] Richardson, I. G., and H. V. Cane, “Regions of abnormally low proton temperature in the solar wind (1965– 1991) and their association with ejecta”, J. Geophys. Res., 100, 23,397, 1995.
[3] Richardson, I. G., H. V. Cane, and E. W. Cliver, “Sources of geomagnetic activity during nearly three solar cycles (1972– 2000)”, J. Geophys. Res.,107(A8), 1187, 10.1029/2001JA000504, 2002.
[4] Colaninno, R.C., Vourlidas, A., Wu, C.C., “Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging”, J. Geophys. Res. 118, 6866–6879, 2013.
[5] Shanmugaraju, A., Vrsnak, B., “Transit time of coronal mass ejection under different ambient solar wind conditions”, Sol. Phys. 289, 339–349, 2014.
[6] Vrsnak, B., Zic, T., Vrbanec, M., Temmer, M., Rollett, T., Mosti, C., Veronig, A., Calogovic, J., Dumbovic, M., Lulic, S., Moon, Y.-J., Shanmugaraju, A., “Propagation of interplanetary coronal mass ejections: The Drag-Based Model”, Sol. Phys. 285, 295–315, 2013.
[7] Zhao, X., Dryer, M., Current status of CME/shocks arrival time prediction. Space Weather. http://dx..org/10.1002/2014SW001060, 2014.
[8] Manoharan, P.K., Gopalswamy, N., Yashiro, S., Lara, A., Michalek, G., Howard, R.A., “Influence of coronal mass ejection on propagation of interplanetary Shocks”, J. Geophys. Res. 109, A06109, 2004.
[9] Richardson, I.G., and H.V. Cane, “Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011)”, J. Space Weather Space Clim., 2, A02, .: 10.1051/swsc/2012003, 2012a.
[10] Richardson, I.G., and H.V. Cane, “Solar wind drivers of geomagnetic storms during more than four solar cycles”, J. Space Weather Space Clim., 2, A01, .: 10.1051/swsc/2012001, 2012b.
[11] Russell, C.T., J.G. Luhmann, and L.K. Jian, “How unprecedented a solar minimum?”, Rev. Geophys., 48, RG2004, 10.1029/2009RG000316, 2010.
[12] Tsurutani, B.T., E. Echer, and W.D. Gonzalez, “The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields”, Ann. Geophys., 29, 839, 10.5194/angeo-29-839-2011, 2011.
[13] Tsurutani, B. T. and W. D. Gonzalez, “The interplanetary causes of magnetic storms: A review, in Magnetic Storms”, Geophys. Monogr. Ser., vol. 98, edited by B. T. Tsurutani, W. D. Gonzalez, and Y. Kamide, p. 77, AGU, Washington, D. C. ,1997.
[14] Tsurutani, B. T., W. D. Gonzalez, F. Tang, S. I. Akasofu, and E. J. Smith ,”Solar wind southward Bz features responsible for major magnetic storms of 1978–1979”, J. Geophys. Res., 93, 8519.
[15] Stone, R.G., Frandsen, A.M., Mewaldt, R.A., Christian, E.R.,Margolies, D., Ormes, J.F., Snow, F.: 1998, “The advanced composition explorer”, Space Sci. Rev. 86, 1, 1998.
[16] Burlaga, L.F., “Magnetic clouds and force-free field with constant alpha”, J. Geophys. Res. 93, 7217, 1988.
[17] Huttunen, K. E. J, Koskinen, H. E. J., and Schwenn, R., “Variability of magnetospheric storms driven by different solar wind perturbations”, J. Geophys. Res., 107, A47, 10.1029/2001JA900171, 2002.
[18] Kim, K.-H., Moon, Y.-J., Cho, K.-S., “Prediction of the 1-AU arrival times of CME-associated interplanetary shocks: Evaluation of an empirical interplanetary shock propagation model”, J. Geophys. Res. 112, A05104, 2007 .
[19] Richardson, I.G., Cane, H.V.:, “Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies”, J. Geophys. Res. 109, 9104, 2004.
[20] Sugiura, M., “Hourly values of equatorial Dst for the IGY”, Ann. Int. Geophys. Year, 35, 9, 1964.
[21] Balendra Pratap Singh, Achyut Pandeya, P. K. Srivastava, Devendra Kumar Bajpai, Kamlesh Pd. Jaiswal, “Geomagnetic Storm Events and Associated Phenomena During the Ascending Phase of Solar Cycle-24”, International Journal of Scientific Research in Physics and Applied Sciences, Vol.3, Issue.1, pp.1-5, 2015.
[22] Gosling, J. T., “Coronal mass ejections and magnetic flux ropes in interplanetary space, in Physics of Magnetic Flux Ropes”, Geophys. Monogr. Ser., vol. 58, edited by C. T. Russell, E. R. Priest, and L. C. Lee, p. 343, AGU, Washington, D. C., 1990.
[23] Dungey, J.W., “Interplanetary magnetic field and the auroral zones”, Phys. Rev. Lett., 6, 47, 1961.
[24] Crooker, N. U., J. T. Gosling, E. J. Smith, and C. T. Russell, “A bubblelike coronal mass ejection flux rope in the solar wind, in Physics of Magnetic Flux Ropes”, Geophys. Monogr. Ser., vol. 58, edited by C. T. Russell, E. R. Priest, and L. C. Lee, p. 365, AGU, Washington, D.C., 1990.
[25] Richardson, I.G., Webb, D.F., Zhang, J., Berdichevsky, D.B., Biesecker, D.A., Kasper, J.C., Kataoka, R., Steinberg, J.T., Thompson, B.J., Wu, C.-C., Zhukov, A.N. “Major geomagnetic storms (Dst≤−100 nT) generated by corotating interaction regions”, J. Geophys. Res. 111(A10), 7, 2006.
[26] Lugaz, N., Farrugia, C.J., Huang, C.-L., Spence, H.E.:, “Extreme geomagnetic disturbances due to shocks within CMEs”, Geophys. Res. Lett. 42, 4694, 2015.
[27] Möstl, C., Farrugia, C.J., Kilpua, E.K.J., Jian, L.K., Liu, Y., Eastwood, J.P., Harrison, R.A., Webb, D.F., Temmer, M., Odstrcil, D., Davies, J.A., Rollett, T., Luhmann, J.G., Nitta, N., Mulligan, T., Jensen, E.A.,Forsyth, R., Lavraud, B., de Koning, C.A., Veronig, A.M., Galvin, A.B., Zhang, T.L., Anderson, B.J., “Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere”, Astrophys. J. 758, 10, 2012.
[28] Zhang, J., Hess, P., Poomvises, W., “A comparative study of coronal mass ejections with and without magnetic cloud structure near the Earth: Are all interplanetary CMEs flux ropes?”, Solar Phys. 284, 89, 2013.
[29] Richardson, I.G., Cane, H.V., “Regions of abnormally low proton temperature in the solar wind (1965 –1991) and their association with ejecta”. J. Geophys. Res. 100, 23397, 1995.
[30] McComas, D. J., Ebert, R. W., Elliott, H. A., Goldstein, B. E., Gosling, J. T., Schwadron, N. A., and Skoug, R. M., “Weaker solar wind from the polar coronal holes and the whole Sun”, Geophys. Res. Lett., 35, L18103, 2008.
[31] Smith, E. J. and Balogh, A., “Decrease in heliospheric magnetic flux in this solar minimum: recent Ulysses magnetic field observations”, Geophys. Res. Lett. 35, L22103, 2008.
[32] Lee, C. O., Luhmann, J. G., de Pater, I., Mason, G. M., Haggerty, D., Richardson, I. G., Cane, H. V., Jian, L. K., Russell, C. T., and Desai, M. I. “Organization of energetic particles by the solar wind structure during the declining to minimum phase of solar cycle 23”, Sol. Phys, 263, 239-261, 2010.
[33] Abramenko, V., Yurchyshyn, V., Linker, J., Mikic, Luhmann, J., and Lee, C. O., “Low latitude coronal holes at the minimum of the 23rd solar cycle”, 712, 813-818, Astrophys. J., 2010.
[34] Tsurutani, B.T., Gonzalez, W.D., Tang, F., Akasofu, S.I. and Smith, E.J. “Solar Wind Southward Bz Features Responsible for Major Magnetic Storms of 1978-1979”, Journal of Geophysical Research,93 8519, 1988.
[35] Burlaga, L.F., “Magnetic clouds and force-free field with constant alpha”, J. Geophys. Res. 93, 7217, 1988.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.