Full Paper View Go Back
Effect of molarity variation on band gap of CuO Nanostructures Synthesized by wet chemical method
C. Kalita1 , S. Karmakar2
Section:Research Paper, Product Type: Isroset-Journal
Vol.6 ,
Issue.6 , pp.122-126, Dec-2018
CrossRef-DOI: https://doi.org/10.26438/ijsrpas/v6i6.122126
Online published on Dec 31, 2018
Copyright © C. Kalita, S. Karmakar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: C. Kalita, S. Karmakar, “Effect of molarity variation on band gap of CuO Nanostructures Synthesized by wet chemical method,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.6, Issue.6, pp.122-126, 2018.
MLA Style Citation: C. Kalita, S. Karmakar "Effect of molarity variation on band gap of CuO Nanostructures Synthesized by wet chemical method." International Journal of Scientific Research in Physics and Applied Sciences 6.6 (2018): 122-126.
APA Style Citation: C. Kalita, S. Karmakar, (2018). Effect of molarity variation on band gap of CuO Nanostructures Synthesized by wet chemical method. International Journal of Scientific Research in Physics and Applied Sciences, 6(6), 122-126.
BibTex Style Citation:
@article{Kalita_2018,
author = {C. Kalita, S. Karmakar},
title = {Effect of molarity variation on band gap of CuO Nanostructures Synthesized by wet chemical method},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {12 2018},
volume = {6},
Issue = {6},
month = {12},
year = {2018},
issn = {2347-2693},
pages = {122-126},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1023},
doi = {https://doi.org/10.26438/ijcse/v6i6.122126}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i6.122126}
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1023
TI - Effect of molarity variation on band gap of CuO Nanostructures Synthesized by wet chemical method
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - C. Kalita, S. Karmakar
PY - 2018
DA - 2018/12/31
PB - IJCSE, Indore, INDIA
SP - 122-126
IS - 6
VL - 6
SN - 2347-2693
ER -
Abstract :
The wet chemical method has been implemented to synthesize CuO nanostructures at 1000C. The monoclinic phase structure of CuO nanostructures has been affirmed by X-ray Diffraction (XRD) pattern. Crystal size and dislocation density of the nanostructures have been calculated from XRD data. UV-visible absorption spectra have been used to estimate band gap of the prepared CuO nanostructures. The refractive index and dielectric constant of CuO nanostructures have been calculated from band gap which shows an increase with the decrease of the band gap. Field Emission Scanning Electron Microscopy (FESEM) has been used to inspect the crystals’ surface morphology
Key-Words / Index Term :
Nanostructures, XRD, optical band gap, FESEM
References :
[1] H. Kidowaki, T. Oku, T. Akiyama, A. S. B. Jeyadevan, J. Cuya, “Fabrication and Charcterization of CuO-based Solar Cells”, Journal of Materials Science Research, vol. 1, Issue. 1, 2012
[2] S. Ashonkan, V. Ponnuswamy, P. Jayamrugan, Y. V. S. Rao, “Fabrication and characterization of CuO nanostructures: Its humidity sensor application”, South Asian Journal of Engineering and Technology, Vol. 1, Issue. 1,pp. 11-23, 2015
[3] H. Abbasian, D. Ghanbari, G. Nabiyouni, “Sonochemical-Assisted Synthesis of Copper Oxide Nanostructures and Its Application as Humidity Sensor”, Journal of NANOSTRUCTURES, Vol. 3, Issue. 4, pp.429-434, 2013
[4] S.B. Wang, C. H. Hsiao, S. J. Chang, K. T. Lam, K. H. Wen, S. J. Young, S. C. Hung, B. R. Huang, “CuO Nanowire-Based Humidity Sensor”, IEEE SENSORS JOURNAL, Vol. 12, Issue. 6, pp. 1884-1888, 2012.
[5] Z. Zhu, W. Zeng, S. Cao, L. Chen, “Gas sensing property of novel flower-like nanostructure CuO ”, Journal of Material Science:Materials in Electronics, Vol. 26, Issue. 11, pp. 9037-9043, 2015
[6] L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J.X. Zhang, H. Gong, J.C. Li, T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors”, Nanotechnology, Vol. 20, 2009
[7] X. Li, W. Guo, H. Huang, T. Chen, M. Zhang, Y. Wang, “Synthesis and photocatalytic Properties of CuO Nanostructures”, Journal of Nanoscience and Nanotechnology, Vol. 14 , Issue.5, pp. 3428-3432, 2014
[8] A.Azam, A. S. Ahmed, M. Oves, M.S. Khan, A. Memic, “Size-dependent antimicrobial properties of CuO nanostructures against gram-positive and –negative bacterial strains”, International Journal of Nanomedicine , Vol. 7, pp. 3527-3535, 2012
[9] A. Goswami, P. K. Raul, M.K. Purkait, “Arsenic adsorption using copper (II) oxide nanostructures”, Chemical Engineering Research and Design, Vol. 90, Issue. 9, pp. 1387-1396, 2012
[10] K. J. Reddy, K. J. McDonald, H. King, “A novel arsenic removal process for water using cupric oxide nanostructures”, Journal of Colloid and Interface Science, Vol. 397, pp. 96-102, 2013.
[11] Carol A. Martinson, K. J. Reddy, “Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanostructures”, Journal of Colloid and Interface Science, Vol. 336, Issue. 2, pp. 406-411, 2009
[12] E. Bazrafshan, D. Balarak, A. H. Panahi, H. Kamani, A. H. Mahvi, “FLUORIDE REMOVAL FROM AQUEOUS SOLUTIONS BY CUPRICOXIDE NANOSTRUCTURES”,Vol. 49, Issue. 3, pp. 233-244, 2016
[13] G. Mustafa, H. Tahir, M. Sultan, N. Akhtar, “Synthesis and characterization of cupric oxide (CuO) nanostructures and their application for the removal of dyes”, African Journal of Biotechnology, Vol. 12, Issue. 47, pp. 6650-6660, 2013
[14] S. Mahdavi, M. Jalali, A. Afkhami , “ Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanostructures”, In: Diallo M.S., Fromer N.A., Jhon M.S. (eds) Nanotechnology for Sustainable Development. Springer, Cham,2012
[15] A.A. Farghali , M. Bahgat, A. Enaiet Allah , M.H. Khedr, “Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures”, Beni-Suef University Journal of Basic and Applied Sciences, Vol. 2, Issue.2 ,pp. 61-71, 2013
[16] K. Phiwdang, S. Suphankij, W. Mekprasart, W. Pecharapa, “Synthesis of CuO Nanostructures by Precipitation Method Using Different Precursors”, Energy Procedia, Vol. 34, pp. 740-745, 2013
[17] M. Shahmiri, N. A. Ibrahim, N. Zainuddin, N. Asim, B. Bakhtyar, A. Zaharim, k. Sopian, “Effect of pH on the synthesis of CuO Nanosheets by Quick Precipitation Method”, WSEAS TRANSACTIONS on ENVIRNONMENT and DEVELOPMENT, Vol. 9, Issue. 2, pp.137-146 , 2013
[18] N. G. Telkapalliwar, D. M. Borikar, K. G. Rewatkar, “MICROWAVE ASSISTAED SYNTHESIS OF COPPER OXIDE NANOSTRUCTURES: OPTICAL AND STRUCTURAL CHARCTERIZATION”, INTERNATIONAL JOURNAL OF ADVANCE RESEARCH AND INNOVATIVE IDEAS IN EDUCATION , Vol. 2, Issue. 2, pp. , 2016
[19] K. Kannaki, P. S. Ramesh, D. Geetha, “Hydrothermal synthesis of CuO Nanostructure and Their Characterizations”, International Journal of Scientific & Engineering Research, Vol. 3, Issue. 9, 2012
[20] Y. Aparna, K. V. Rao, P. S. Subharao, “Preparation and Characterization of CuO Nanostructures by Novel Sol-Gel Technique ”, JOURNAL OF NANO- and ELECTRONIC PHYSICS, Vol. 4. Issue. 3, pp. 03006-1-03006-7, 2012
[21] C.Y. Chiang, K. Aroh, N. Franson, V. R. Satsangi, S. Dass, S. Ehrman, “Copper oxide nanostructures made by flame spray pyrolysis for photochemical water splitting-Part II. Photochemical study”, International journal of hydrogen energy ,Vol. 36 ,Issue. 24, pp.15519-15526, 2011
[22] E. Shahsavani, N. Feizi, A. D. Khalaji, “Copper Oxide Nanostructures Prepared by Solid State Thermal Decomposition:”, Journal of Ultrafine Grained and Nanostructured Materials, Vol. 49, Issue. 1, pp. 48-50, 2016
[23] S. Singhal, J. Kaur, T. Namgyal, R. Sharma, “Cu-doped ZnO nanostructures: Synthesis, structural and electrical properties”, Physica B: Condensed Matter, Vol. 407, Issue. 8, pp. 1223-1226, 2012
[24] S. Senthilarasu, R. Sathyamoorthy, S. Lalitha, “Synthesis and characterization of β-FeSi2 grown by thermal annealing of Fe/Si2 bilayers for photovoltaic applications”, Solar Energy Materials & Solar Cells, Vol. 82, pp. 299-305, 2004
[25] K.J. Arun, A.K. Batra, A. Krishna,, K. Bhat, M. D. Aggarwal, P. J. Joseph Francis,”Surfactant Free Hydrothermal Synthesis of Copper Oxide Nanostructures”, American Journal of materials science, Vol.5,Issue.(3A), pp.36-38, 2015
[26] K. Kannaki, P. S. Ramesh , D. Geetha,”Hydrothermal synthesis of CuO Nanostructure and Their Chacterizations”,International Journal of Scientific & Engineering Research Volume3, issue 9, pp. 616-619, September-2012.
[27] P. K. Mochahari, “Investigation of Structural and Spectroscopic Properties of Nanostructured CdS Films”, International Journal of Scientific Research in Physics and Applied Sciences, Vol. 5, Issue. 6, pp. 1-6, 2017
[28] P. Herve, L. K. J. Vandamme, “General relation between refractive index and energy gap in semiconductors”, Infrared Phys. Technol. Vol. 35, pp. 609-615, 1994
[29] G. A. Samara, “Temperature and pressure dependences of the dielectric constants of semiconductors”, Phys. Rev. B, Vol. 27, pp. 3494-3505, 1983.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.