Full Paper View Go Back
Slabs of Crystallographic Planes of Rutile TiO2 as a Photocatalytic Surface
N. T. Tayade1 , M. P. Tirpude2 , P. R. Arjunwadkar3
Section:Research Paper, Product Type: Isroset-Journal
Vol.7 ,
Issue.1 , pp.60-64, Feb-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrpas/v7i1.6064
Online published on Feb 28, 2019
Copyright © N. T. Tayade, M. P. Tirpude, P. R. Arjunwadkar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: N. T. Tayade, M. P. Tirpude, P. R. Arjunwadkar, “Slabs of Crystallographic Planes of Rutile TiO2 as a Photocatalytic Surface,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.7, Issue.1, pp.60-64, 2019.
MLA Style Citation: N. T. Tayade, M. P. Tirpude, P. R. Arjunwadkar "Slabs of Crystallographic Planes of Rutile TiO2 as a Photocatalytic Surface." International Journal of Scientific Research in Physics and Applied Sciences 7.1 (2019): 60-64.
APA Style Citation: N. T. Tayade, M. P. Tirpude, P. R. Arjunwadkar, (2019). Slabs of Crystallographic Planes of Rutile TiO2 as a Photocatalytic Surface. International Journal of Scientific Research in Physics and Applied Sciences, 7(1), 60-64.
BibTex Style Citation:
@article{Tayade_2019,
author = {N. T. Tayade, M. P. Tirpude, P. R. Arjunwadkar},
title = {Slabs of Crystallographic Planes of Rutile TiO2 as a Photocatalytic Surface},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {2 2019},
volume = {7},
Issue = {1},
month = {2},
year = {2019},
issn = {2347-2693},
pages = {60-64},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1129},
doi = {https://doi.org/10.26438/ijcse/v7i1.6064}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i1.6064}
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1129
TI - Slabs of Crystallographic Planes of Rutile TiO2 as a Photocatalytic Surface
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - N. T. Tayade, M. P. Tirpude, P. R. Arjunwadkar
PY - 2019
DA - 2019/02/28
PB - IJCSE, Indore, INDIA
SP - 60-64
IS - 1
VL - 7
SN - 2347-2693
ER -
Abstract :
This study is initially dealing with the density of states of the rutile TiO2 system and then dealing with the system made from the crystallographic plane in term of the slab. Four slabs (corresponding to the planes (110), (101), (211) and (301)) had been chosen for the study. These slabs assumed to be having the free surfaces of its solid and involved in a catalytic activity as a photocatalyst. The nature of such surfaces as a catalyst has been studied from their electron density of state in this paper. The variation in Band gap and nature of DOS was found significantly different. The work has reported (110) plane surface would be better compare to other as a free surface for the application as a photocatalyst.
Key-Words / Index Term :
Photocatalyst slab, DFT, Density of states, Energy band gap, slabs of rutile TiO2
References :
[1] S. W. Verbruggen, “TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement,” J. Photochem. Photobiol. C Photochem. Rev., vol. 24, pp. 64–82, 2015.
[2] P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby, “Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism,” Appl. Environ. Microbiol., vol. 65, no. 9, pp. 4094–4098, 1999.
[3] J. Kiwi, S. Rtimi, R. Sanjines, and C. Pulgarin, “TiO2 and TiO2-doped films able to kill bacteria by contact: New evidence for the dynamics of bacterial inactivation in the dark and under light irradiation,” Int. J. Photoenergy, vol. 2014, 2014.
[4] F. Xu, T. Wang, H. Chen, J. Bohling, A. M. Maurice, L. Wu, and S. Zhou, “Preparation of photocatalytic TiO2-based self-cleaning coatings for painted surface without interlayer,” Prog. Org. Coatings, vol.113, pp. 15–24, 2017.
[5] C. L. Pang, R. Lindsay, and G. Thornton, “Structure of Clean and Adsorbate-Covered Single-Crystal Rutile TiO2 Surfaces,” Chem. Rev., vol. 113, no. 6, pp. 3887–3948, 2013.
[6] A. A. Skelton and T. R. Walsh, “Interaction of liquid water with the rutile TiO2 (110) surface,” Mol. Simul., vol. 33, no. 4–5, pp. 379–389, 2007.
[7] R. R. Dachille F, Simons PY, “Pressure-temperature studies of anatase, brookite, rutile and TiO2,” Am Miner., vol. 53, no. II, pp. 1929– 1939, 1968.
[8] A. C. Withers, E. J. Essene, and Y. Zhang, “Rutile/TiO2II phase equilibria,” Contrib. to Mineral. Petrol., vol. 145, no. 2, pp. 199–204, 2003.
[9] C. N. R. Rao, “Kinetics and thermodynamics of the crystal structure transformations of spectroscopically pure anatase to rutile,” Can. J. Chem, vol. 39, pp. 498–500, 1961.
[10] L. Vegard, “VI. Results of Crystal Analysis,” London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 32, no. 187, pp. 67–97, 1916.
[11] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, “Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films,” Sci. Rep., vol. 4, p. 4043, Feb. 2014.
[12] L. Liu, H. Zhao, J. M. Andino, and Y. Li, “Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry,” ACS Catal., vol. 2, no. 8, pp. 1817–1828, Aug. 2012.
[13] Y. Yamamoto, K. Nakajima, T. Ohsawa, Y. Matsumoto, and H. Koinuma, “Preparation of Atomically Smooth TiO2 Single Crystal Surfaces and Their Photochemical Property,” Jpn. J. Appl. Phys., vol. 44, no. 4L, p. L511, 2005.
[14] P. A. Morris Hotsenpiller, J. D. Bolt, W. E. Farneth, J. B. Lowekamp, and G. S. Rohrer, “Orientation Dependence of Photochemical Reactions on TiO2 Surfaces,” J. Phys. Chem. B, vol. 102, no. 17, pp. 3216–3226, 1998.
[15] J. L. Giocondi, P. A. Salvador, and G. S. Rohrer, “The origin of photochemical anisotropy in SrTiO3,” Top. Catal., vol. 44, no. 4, pp. 529–533, Jul. 2007.
[16] J. B. Lowekamp, G. S. Rohrer, P. A. Morris Hotsenpiller, J. D. Bolt, and W. E. Farneth, “Anisotropic Photochemical Reactivity of Bulk TiO2 Crystals,” J. Phys. Chem. B, vol. 102, no. 38, pp. 7323–7327, 1998.
[17] S. of C. Pan, Jian (Engineering, “Facet Engineering of TiO2 Nanocrystals for Solar Energy Conversion,” The University of Queensland, 2014.
[18] J. N. Wilson and H. Idriss, “Structure Sensitivity and Photocatalytic Reactions of Semiconductors. Effect of the Last Layer Atomic Arrangement,” J. Am. Chem. Soc., vol. 124, no. 38, pp. 11284–11285, 2002.
[19] R. Tio, “Computational Simulations of Morphological Transformations by Surface Structures : The E slab - nE bulk,” vol. 20, no. 4, pp. 920–925, 2017.
[20] S. Mezhenny S, Maksymovych P, Thompson TL, Diwald O and et al. D, Walck SD, “STM studies of defect production on the TiO2 (1 1 0)-(1×1) and TiO2 (1 1 0)-(1×2) surfaces induced by UV irradiation.,” Chem. Phys. Lett., vol. 369, no. 1–2, pp. 152–158, 2003.
[21] J. Pan, G. Liu, G. Q. Lu, and H.-M. Cheng, “On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals,” Angew. Chem. Int. Ed., vol. 50, pp. 2133 –2137, 2011.
[22] L. Xu, J. Xu, J.-T. Wang, and A. Selloni, “The Reactivity of Anatase TiO2 (211) Surface and the Bond- Charge Counting Model,” in Titanium Dioxide, M. Janus, Ed. Rijeka: InTech, 2017.
[23] M. Matsui and M. Akaogi, “Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO2,” Mol. Simul., vol. 6, no. 4–6, pp. 239–244, 1991.
[24] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, m. Cococcioni, I. Dabo, A. D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials,” 2009.
[25] E. P. Meagher and G. A. Lager, “Polyhedral thermal expansion in the TiO2 polymorphs: refinement of the crystal structures of rutile and brookite at high temperature,” Can. Mineral., vol. 17, pp. 77–85, 1979.
[26] A. Rønnau, “A Closer Look at the TiO2 (110) Surface with STM,” Adsorpt. J. Int. Adsorpt. Soc., vol. 2, no. July, p. 103, 2003.
[27] H. Hussain, G. Tocci, T. Woolcot, X. Torrelles, C. L. Pang, D. S. Humphrey, C. M. Yim, D. C. Grinter, G. Cabailh, O. Bikondoa, R. Lindsay, J. Zegenhagen, A. Michaelides, and G. Thornton, “Structure of a model TiO2 photocatalytic interface,” Nat. Mater., vol. 16, no. 4, pp. 461–466, 2016.
[28] A. Sirisuk, E. Klansorn, and P. Praserthdam, “Effects of reaction medium and crystallite size on Ti3+ surface defects in titanium dioxide nanoparticles prepared by solvothermal method,” Catal. Commun, vol. 9, pp. 1810–1814, 2008.
[29] Y. Kang, X. Li, Y. Tu, Q. Wang, and H. Ågren, “On the mechanism of protein adsorption onto hydroxylated and nonhydroxylated TiO2 surfaces,” J. Phys. Chem. C, vol. 114, pp. 14496–14502, 2010.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.