Full Paper View Go Back
J. Bhavani1 , Rita John2
Section:Research Paper, Product Type: Isroset-Journal
Vol.7 ,
Issue.1 , pp.65-75, Feb-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrpas/v7i1.6575
Online published on Feb 28, 2019
Copyright © J. Bhavani, Rita John . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: J. Bhavani, Rita John, “Band Gap Engineering of Cu2-II-IV-VI4 Quaternary Semiconductors Using PBE-GGA, TB-mBJ and mBJ+U Potentials,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.7, Issue.1, pp.65-75, 2019.
MLA Style Citation: J. Bhavani, Rita John "Band Gap Engineering of Cu2-II-IV-VI4 Quaternary Semiconductors Using PBE-GGA, TB-mBJ and mBJ+U Potentials." International Journal of Scientific Research in Physics and Applied Sciences 7.1 (2019): 65-75.
APA Style Citation: J. Bhavani, Rita John, (2019). Band Gap Engineering of Cu2-II-IV-VI4 Quaternary Semiconductors Using PBE-GGA, TB-mBJ and mBJ+U Potentials. International Journal of Scientific Research in Physics and Applied Sciences, 7(1), 65-75.
BibTex Style Citation:
@article{Bhavani_2019,
author = {J. Bhavani, Rita John},
title = {Band Gap Engineering of Cu2-II-IV-VI4 Quaternary Semiconductors Using PBE-GGA, TB-mBJ and mBJ+U Potentials},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {2 2019},
volume = {7},
Issue = {1},
month = {2},
year = {2019},
issn = {2347-2693},
pages = {65-75},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1130},
doi = {https://doi.org/10.26438/ijcse/v7i1.6575}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i1.6575}
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1130
TI - Band Gap Engineering of Cu2-II-IV-VI4 Quaternary Semiconductors Using PBE-GGA, TB-mBJ and mBJ+U Potentials
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - J. Bhavani, Rita John
PY - 2019
DA - 2019/02/28
PB - IJCSE, Indore, INDIA
SP - 65-75
IS - 1
VL - 7
SN - 2347-2693
ER -
Abstract :
The structural and electronic properties of Cu2ZnGeX4 (X = S, Se and Te) with a tetrahedral coordinated stannite structure have been investigated using first-principles calculations. The optimized lattice constants, anion displacement u, tetragonal distortion parameter η, band gap, density of states and bulk modulus values are reported. The modified Becke-Johnson exchange potential (TB-mBJ), is used to calculate the electronic properties of Cu based quaternary semiconductors Cu2ZnGeX4 (X = S, Se and Te) and thus the results for the band gap and other electronic properties such as Total Density of States (TDOS) and Partial Density of States (PDOS) are analyzed in detail. Also the results obtained using TB-mBJ potential are compared with the standard local density and generalized gradient approximation (GGA). Even though the comparison of results shows that the results obtained by TB-mBJ are still underestimating the experimental results. This explains the inadequacy of mBJ potential for semiconductors with strongly delocalized d electrons. Thus in this paper an on-site Coulomb U is incorporated within mBJ potential (mBJ + U) which leads to a better description of the pd hybridization and therefore the band gap which is very much comparable with the experimental results.
Key-Words / Index Term :
Cu2-II-IV-VI4(X = S, Se and Te), Band Structure, TB-mBJ potential, mBJ+U, Cu-based semiconductor, importance of d-orbitals.
References :
[1] P.A. Fernandes, P.M.P. Salome, A.F.da Cunha, “Study of polycrystalline Cu2ZnSnS4 films by Raman scattering”, J. Alloys Comp. 509, 7600, 2011.
[2] A. Shavel, J. Arbiol, A. Cabot, “ Synthesis of Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe1+x+2y ”, J. Am. Chem. Soc. 132, 4514, 2010.
[3] T.K. Todorov, K.B. Reuter, D.B. Mitzi, “ High-efficiency solar cell with Earth-abundant liquid-processed absorber”, Adv. Mater. 22, E156, 2010.
[4] C. Sevik, T.Cagin, “ Ab initio study of thermoelectric transport properties of pure and doped quaternary compounds”, Phys. Rev. B 82, 045202, 2010.
[5] D.D. Koelling, B.N. Harmon, “A technique for relativistic spin-polarised calculations”, J.Phys. C: Solid State Phys. 10, 3107, 1977.
[6] K. Schwarz, P. Blaha, G.K.H. Madsen, “Electronic structure calculations of solids using the WIEN2k package for material sciences”, Comput. Phys. Commun. 147, 71, 2002.
[7] P. Hohenberg. W. Kohn, “Inhomogeneous Electron Gas”, Phys. Rev. 136, 864, 1964
[8] P. Blaha, K. Schwarz, G. H. Madsen, D. Kvasnicka, J. Luitz, FP-L/APW+lo Program for Calculating Crystal Properties, Techn. WIEN2K, Austria, 2001.
[9] F. El Haj Hassan, B. Amrani, “Structural, electronic and thermodynamic properties of magnesium chalcogenide ternary alloys”, J. Phys. : Condens. Matter 19, 386234, 2007.
[10] F. El Haj Hassan, H. Akbarzadeh, “Ground state properties and structural phase transition of beryllium chalcogenides”, Comput. Matter . Sci. 35, 423, 2006.
[11] F.Tran, and P. Blaha, “Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential”, Phys. Rev. Lett. 102, 226401, 2009.
[12] O. Madelung , “Data in Science and Technology, Semiconductors Group IV Elements and II-V Compounds”, Springer- Verlag, Berlin, 1991.
[13] N.T. Tayade1 , A.T. Shende2 , M.P. Tirpude, “DFT study of L-alanine’s Crystal, Molecule and Three Linear Molecules for Optoelectronic Behavior”, Vol.6, Issue.4, pp.23-27, 2018.
[14] S.Antoci and L. Mihich, “Band structures and charge densities of KCl, NaF, and LiF obtained by the intersecting-spheres model", Phys. Rev. B 21, 799, 1980.
[15] A.V. Moholkar, S.S. Shinde, A.R. Badar, K. Sim, H.K. Lee, K.Y. Rajpure, P.S. Patil, C.H.Bhosale, J.H. Kim, “Synthesis and characterization of Cu2ZnSnS4 thin films grownby PLD: Solar cells”, J. Alloys Comp. 509, 7439, 2011.
[16] O.V. Parasyuk, I.D. Olekseyuk, L.V. Piskach, “ X-ray powder diffraction refinement of Cu2ZnGeTe4 structure and phase diagram of the Cu2GeTe3 – ZnTe system”, J. Alloys Comp.397, 169, 2005.
[17] J.P. Perdew, K. Burke, M. ernzerhof, “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett. 77, 3865, 1996.
[18] A D. Becke and M. R. Ruussel, “ Exchange holes in inhomogeneous systems: A coordinate- space model”, Phys. Rev. A 39, 3761, 1989.
[19] A D. Becke, J. Chem.“A new mixing of Hartree–Fock and local density functional theories”, Phys. 98, 1372, 1993.
[20] J.A. Camargo – Martinez and R. Baquero, “The band gap problem: the accuracy of the Wien2k code confronted”, Revista Mexicana de Fisica 59, 453-459, 2013.
[21] Y. Zhang, X. Yuan, X. Sun, B.-C. Shih, P. Zhang, and W. Zhang, “Comparative study of structural and electronic properties of Cu-based multinary semiconductors”, Phys. Rev. B 84, 075127, 2011.
[22] H. Jiang, “Band gaps from the Tran-Blaha modified Becke-Johnson approach: a systematic investigation.”, J. Chem. Phys. 138, 134115, 2013.
[23] Anna Miglio, Christophe P. heinrich, Wolfgang Tremel, Geoffroy Hautier, and Wolfgang G.Zeier. “Local Bonding Influence on the Band Edge and Band Gap Formation in Quaternary Chalcopyrites”, Adv. Sci. 4, 1700080, 2017.
[24] J.P. Perdew, S. Kurth, A. Zupan and P. Blaha, “ Accurate Density Functional with
Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation”, Phys. Rev.Lett. 82, 2544, 1999.
[25] C. L. Dong, C. Persson, L. Vayssieres, A. Augustsson, T. Schmitt, M. Mattesini, R. Ahuja,C. L. Chang, and J. H. Guo, “Electronic structure of nanostructured ZnO from x-
ray absorption and emission spectroscopy and the local density approximation”, Phys. Rev. B 70, 195325, 2004.
[26] Rita John, “Investigation on some of the salient features of II–IV–V2 pnictides using band structure calculations as a tool”, Computational material science 44, 106-110, 2008.
[27] Rita John, “Band Gap Engineering in Bulk and Nano Semiconductors”.MRS Online Proceedings Library Archive, 1454,233-238, 2008.
[28] S. Z. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvag, U. Grossner, and B. G. Svensson, “Coulomb correlation effects in zinc monochalcogenides “, J. Appl. Phys. 100, 043709, 2006.
[29] G. C. Zhou, L. Z. Sun, J. B. Wang, X. L. Zhong, and Y. C. Zhou, “Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study”, Physica B 403, 2832, 2008.
[30] B.-C. Shih, Y. Zhang, W. Zhang, and P. Zhang, “Screened Coulomb interaction of localized electrons in solids from first principles”, Phys. Rev. B 85, 045132, 2012.
[31] B.-C. Shih, T. A. Abtew, X. Yuan, W. Zhang, and P. Zhang, “Screened Coulomb interactions of localized electrons in transition metals and transition-metal oxides”,
Phys. Rev. B 86, 165124, 2012.
[32] T. Miyake and F. Aryasetiawan, “Screened Coulomb interaction in the maximally localized Wannier basis”, Phys. Rev. B 77, 085122, 2008.
[33] Yubo Zhang, Jiawei Zhang, Weiwei Gao, Tesfaye A. Abtew, Youwei Wang, Peihong Zhang, and Wenqing Zhang, “Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U”, The Journal of Chemical Physics 139, 184706, 2013.
[34] H. L. Goodman, “The prediction of semiconducting properties in inorganic compounds”, J.Phys. Chem. Solids 6, 305, 1958.
[35] B. R. Pamplin, “ A systematic method of deriving new semiconducting compounds by structural analogy”. J. Phys. Chem. Solids 25, 675, 1964.
[36] O. M. Madelung, Semiconductors: Data Handbook, 3rd ed.Springer, New York, (2004).
[37] T. Washio, T.Shinji, S.Tajima, T.Fukano, T.Motohiro, K.Jimbo, and H, Katagiri, “Journal of Materials Chemistry 22, 4021, 2012.
[38] G.H.M.Bohm ,A.MacKinnon, O.Madelung, A.Scharmann, and E. G.Scharmer, “Physics of Ternary Compounds”, Springer,NewYork,1985.
[39] Rita John, Solid State Physics, McGraw Hill Education (India) Private Limited, New Delhi; 2014.
[40] Congcong Wang1, Shiyou Chen1,2, J. H. Yang1, L. Lang1, H. J. Xiang1, Xin-Gao Gong1, Aron Walsh3, and Su-Huai Wei4 “Design of I2-II-IV-VI4 Semiconductors through element-substitution: The thermodynamic stability limit and chemical trend”,ChemMater., 26 (11), pp 3411–3417, 2016.
[41] W. G. Zeier, A. Lalonde, Z. M. Gibbs, C.P. Heinrich, M. Panthofer, G. Brunklaus, G.J. Snyder, W. Tremel, J. Matter. Chem. A, 2, 1790, 2014.
[42] S. Adachi, “Handbook on Physical Properties of Semiconductors”, Kluwer, Boston,Vols. I, II, and III, 2004.
[43] Rita John, “Tuning Of Energy Band Gaps In Ternary Semiconductor”, Advanced Materials Research, Vol. 31,164-166, 2008.
[44] F.D. Murnaghan, “The Compressibility of Media under Extreme Pressures”, Proc. Natl. Acad. Sci. U.S.A. 30, 244,1944.
[45] G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjostedt, L.Nordstrom, “Efficient linearization of the augmented plane-wave method”, Phys. Rev. B 64, 195134, 2001.
[46] B.-C. Shih, Y. Zhang, W. Zhang, and P. Zhang, “Screened Coulomb interaction of localized electrons in solids from first principles”, Phys. Rev. B 85, 045132, 2012.
[47] B.-C. Shih, T. A. Abtew, X. Yuan, W. Zhang, and P. Zhang, “Screened Coulomb interactions of localized electrons in transition metals and transition-metal oxides”,
Phys. Rev. B 86, 165124, 2012.
[48] S. Schorr, H.J. Hoebler, M. Tovar, “A neutron diffraction study of the stannite-kesterite solid solution series”, Eur. J. Mineral. 19, 65, 2009.
[49] Yamasaki, T., Suzuki, N. and Motizuki, K. (1987). “Electronic structure of intercalated transition-metaldichalcogenides: M x TiS 2 (M=Fe, Cr)”, J. Phys. C 20,395, 2010.
[50] Dongguo Chen, N.M. Ravindra, “Electronic and optical properties of Cu2ZnGeX4(X= S,Se and Te) quaternary semiconductors”, J. Alloys Comp. 579, 468 – 472, 2013.
[51] Clas Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4”, Journal of Applied Physics 107, 053710, 2010.
[52] K. Doverspike, K. Dwight, A. Wold, “Preparation and characterization of copper zinc germanium sulfide selenide Cu2ZnGeS4-ySey”. Chem. Mater. 2, 194, 1989.
[53] H. Matsushita, T. Maeda, A. Katsui, T. Takizawa, “Thermal Analysis and Synthesis from the metals of Cu based quaternary compounds Cu-III-IV-VI4 and Cu-II-IV-VI4 (II = Zn, Cd;III= Ga, In; Iv = Ge,Sn; VI = Se)”, J. Crystal Growth, 208, 416, 2000.
[54] O. V. Parasyuk, I. D. Olekseyuk, L. V. Piskach, “X-ray powder diffraction refinement of Cu2ZnGeTe4 structure and phase diagram of the Cu2GeTe3–ZnTe system”, J. Alloys
Compd. 397, 169, 2010.
[55] H. Matsushita, T. Ichikawa, A. Katsui, “Structural, thermodynamical and optical properties of Cu2-II-IV-VI4 quaternary compounds”, J. Mater. Sci. 40, 2003, 2005.
[56] J.E. Jaffe, A. Zunger, “Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors”, Phy, Rev. B 1984, 29, 1882 semiconductors”, Phy, Rev. B 1984, 29, 1882.
[57] J. E. Jaffe, A. Zunger, “Anion displacements and the band-gap anomaly in ternary ABC2 chalcopyrite semiconductors”, Phy. Rev. B., 27, 5176, 1983.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.