Full Paper View Go Back
Shape coexistence in near Magic shell nucleus 52Cr
Rajesh Kumar1
Section:Research Paper, Product Type: Isroset-Journal
Vol.7 ,
Issue.2 , pp.85-88, Apr-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrpas/v7i2.8588
Online published on Apr 30, 2019
Copyright © Rajesh Kumar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Rajesh Kumar, “Shape coexistence in near Magic shell nucleus 52Cr,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.7, Issue.2, pp.85-88, 2019.
MLA Style Citation: Rajesh Kumar "Shape coexistence in near Magic shell nucleus 52Cr." International Journal of Scientific Research in Physics and Applied Sciences 7.2 (2019): 85-88.
APA Style Citation: Rajesh Kumar, (2019). Shape coexistence in near Magic shell nucleus 52Cr. International Journal of Scientific Research in Physics and Applied Sciences, 7(2), 85-88.
BibTex Style Citation:
@article{Kumar_2019,
author = {Rajesh Kumar},
title = {Shape coexistence in near Magic shell nucleus 52Cr},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {4 2019},
volume = {7},
Issue = {2},
month = {4},
year = {2019},
issn = {2347-2693},
pages = {85-88},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1262},
doi = {https://doi.org/10.26438/ijcse/v7i2.8588}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i2.8588}
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1262
TI - Shape coexistence in near Magic shell nucleus 52Cr
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - Rajesh Kumar
PY - 2019
DA - 2019/04/30
PB - IJCSE, Indore, INDIA
SP - 85-88
IS - 2
VL - 7
SN - 2347-2693
ER -
Abstract :
The fp-shell nucleus 52Cr is an even-even nuclei near magic number is with closed neutron shell is at N = 28. It was found that coexistence between spherical and deformed shapes can take place rather predominantly in and near semi-magic or doubly magic nuclei. So this nucleus may provide a valuable insight is into the interplay between single-particle and collective modes of excitation. High-spin states in 52Cr have been studied using 27Al (28Si, 3p) 52Cr fusion evaporation reaction at beam energy of 70 MeV. The level scheme of 52Cr has been extended up to Ex ~ 10 MeV. Spins and parities have been assigned to many of the new levels on the basis of the directional correlations and linear polarization measurements using clover detectors. The band structures are discussed in the framework of cranked Woods-Saxon and microscopic projected deformed Hartree-Fock (HF) models. The prolate-oblate shape coexistence is proposed in 52Cr nucleus.
Key-Words / Index Term :
γ-γ coincidence, spin-parity, fusion evaporation reaction, Electromagnetic transitions, γ-transitions and level energy, shape-coexistence
References :
[1] W. Kutschera, B. A. Brown, and K. Ogawa, Riv. Nuovo Cimento 1, 12 (1978).
[2] A. Poves and A. Zuker, Phys. Rep. 70, 235 (1981).
[3] R. B. Mooy and P. M. W. Glaudemans, Z. Phys. A312, 59 (1983).
[4] S. M. Lenzi, D. R. Napoli, A. Gadea, M. A. Cardona, D. Hojman, M. A. Nagarajan, C. Rossi Alvarez, N. H. Medina, G. de Angelis, D. Bazzacco, M. E. Debray, M. De Poli, S. Lunardi, D. de Acuna, Z. Phys. A354, 117 (1996).
[5] J. A. Cameron, J. Jonkman, C. E. Svensson, M. Gupta, G. Hackman, D. Hyde, S. M. Mullins, J. L. Rodriguez, J. C. Waddington, A. Galindo-Uribarri, H. R. And rews, G. C. Ball, V. P. Janzen, D. C. Radford, D. Ward, T. E. Drake, et al., Phys. Lett. B387, 266 (1996).
[6] E. Caurier, J. L. Egido, G. Martinez-Pinedo, A. Poves, J. Retamosa, L. M. Robledo, et al., Phys. Rev. Lett. 75, 2466 (1995).
[7] G. Martinez-Pinedo, A. Poves, L. M. Robledo, E. Caurier, F. Nowacki, J. Retamosa, and A. Zuker, Phys. Rev. C54, R2150 (1996).
[8] S. M. Lenzi, C. A. Ur, D. R. Napoli, M. A. Nagarajan, D. Bazzaco, D. M. Brink,
[9] K. Lips and M. T. McEllistrem, Phys. Rev. C1, 1009 (1970).
[10] I. P. Johnstone and H. G. Benson, J. Phys. G3, L69 (1977).
[11] A. Yokoyama, T. Oda, and H. Horie, Prog. theor. Phys. 60, 427 (1978).
[12] I. P. Johnstone, Phys. Rev. C17, 1428 (1978).
[13] S. W. Sprague, R. G. Arns et al., Phys. Rev. C4, 2074 (1971).
[14] A. Berinde et al., Nucl. Phys. A284, 65 (1977).
[15] D. Evers, A. Harasim, R. L. McGrath, and W. Assmann, Phys. Rev. C63, 1690 (1977).
[16] P. Banerjee, B. Sethi, J. M. Chatterjee et al., Phys. Rev. C36, 2274 (1987).
[17] G. Ripka, Advances in Nuclear Physics,Vol. 1 (1966) Ed.M.Baranger and .Vogt (Plenum).
[18] P. Ring and P. Schuck, The Nuclear Many Body Problems (Springer-Verlag, Berlin, 1980), p. 244.
[19] W. Nazarewicz, M. A. Riley, and J. D. Garrett, Nucl. Phys. A512, 61 (1990).
[20] R. Ernst et al., Phys. Rev. Lett. 84, 416 (2000).
[21] C. W. Towsley et al., Nucl. Phys. A250, 381 (1975).
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.